比较与tf.train.linear_cosine_decay的功能差异
tf.train.linear_cosine_decay
class tf.train.linear_cosine_decay(
learning_rate,
global_step,
decay_steps,
num_periods=0.5,
alpha=0.0,
beta=0.001,
name=None
)
更多内容详见tf.train.linear_cosine_decay。
mindspore.nn.CosineDecayLR
class mindspore.nn.CosineDecayLR(
min_lr,
max_lr,
decay_steps
)(global_step)
更多内容详见mindspore.nn.CosineDecayLR。
使用方式
TensorFlow:计算公式如下:
global_step = min(global_step, decay_steps)
linear_decay = (decay_steps - global_step) / decay_steps
cosine_decay = 0.5 * (1 + cos(pi * 2 * num_periods * global_step / decay_steps))
decayed = (alpha + linear_decay) * cosine_decay + beta
decayed_learning_rate = learning_rate * decayed
MindSpore:计算逻辑和Tensorflow不一样,计算公式如下:
current_step = min(global_step, decay_step)
decayed_learning_rate = min_lr + 0.5 * (max_lr - min_lr) *(1 + cos(pi * current_step / decay_steps))
代码示例
# The following implements CosineDecayLR with MindSpore.
import numpy as np
import tensorflow as tf
import mindspore
import mindspore.nn as nn
from mindspore import Tensor
min_lr = 0.01
max_lr = 0.1
decay_steps = 4
global_steps = Tensor(2, mindspore.int32)
cosine_decay_lr = nn.CosineDecayLR(min_lr, max_lr, decay_steps)
result = cosine_decay_lr(global_steps)
print(result)
# Out:
# 0.055
# The following implements linear_cosine_decay with TensorFlow.
learging_rate = 0.01
global_steps = 2
output = tf.train.linear_cosine_decay(learging_rate, global_steps, decay_steps)
ss = tf.Session()
ss.run(output)
# out
# 0.0025099998