比较与torchvision.datasets.VOCSegmentation的功能差异
torchvision.datasets.VOCSegmentation
class torchvision.datasets.VOCSegmentation(
root: str,
year: str='2012',
image_set: str='train',
download: bool=False,
transform: Optional[Callable]=None,
target_transform: Optional[Callable]=None,
transforms: Optional[Callable]=None
)
mindspore.dataset.VOCDataset
class mindspore.dataset.VOCDataset(
dataset_dir,
task="Segmentation",
usage="train",
class_indexing=None,
num_samples=None,
num_parallel_workers=None,
shuffle=None,
decode=False,
sampler=None,
num_shards=None,
shard_id=None,
cache=None,
extra_metadata=False
)
更多内容详见mindspore.dataset.VOCDataset。
使用方式
PyTorch:生成PASCAL VOC图像分割格式数据集。
MindSpore:用于读取和分析VOC数据集的源数据集。
代码示例
import mindspore.dataset as ds
import torchvision.transforms as T
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
# In MindSpore, the generated dataset with different task setting has different output columns.
voc_dataset_dir = "/path/to/voc_dataset_directory/"
# task = Segmentation, output columns: [image, dtype=uint8], [target,dtype=uint8].
dataset = ds.VOCDataset(dataset_dir=voc_dataset_dir,
task="Segmentation",
usage="train")
for item in dataset:
print("item:", item[0])
print(len(item[0]))
break
# Out:
# item: [255 216 255 ... 73 255 217]
# 52544
# In torch, the output will be result of transform, eg. RandomCrop
root = "/path/to/voc_dataset_directory/"
dataset = datasets.Segmentation(root, image_set='train', year='2012', transform=T.RandomCrop(300))
print(dataset)
print(type(dataset))