比较与torch.nn.GELU的功能差异

查看源文件

torch.nn.GELU

class torch.nn.GELU()(input)

更多内容详见torch.nn.GELU

mindspore.nn.FastGelu

class mindspore.nn.FastGelu()(input_data)

更多内容详见mindspore.nn.FastGelu

使用方式

PyTorch:基于高斯分布的累积分布函数。

MindSpore:采用与PyTorch不同的计算公式。

代码示例

import mindspore
from mindspore import Tensor, nn
import torch
import numpy as np

def test_me():
    input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
    fast_gelu = nn.FastGelu()
    output = fast_gelu(input_x)
    print(output)

def test_torch():
    input_x = torch.Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]))
    gelu = torch.nn.GELU()
    output = gelu(input_x)
    print(output)

if __name__ == '__main__':
    test_me()
    test_torch()

# Out:
# [[-1.5419e-01  3.9922e+00 -9.7474e-06]
#  [ 1.9375e+00 -1.0053e-03  8.9824e+00]]
# tensor([[-1.5866e-01,  3.9999e+00, -0.0000e+00],
#         [ 1.9545e+00, -1.4901e-06,  9.0000e+00]])