比较与torch.optim.lr_scheduler.ExponentialLR的功能差异
torch.optim.lr_scheduler.ExponentialLR
torch.optim.lr_scheduler.ExponentialLR(
optimizer,
gamma,
last_epoch=-1
)
mindspore.nn.exponential_decay_lr
mindspore.nn.exponential_decay_lr(
learning_rate,
decay_rate,
total_step,
step_per_epoch,
decay_epoch,
is_stair=False
)
mindspore.nn.ExponentialDecayLR
mindspore.nn.ExponentialDecayLR(
learning_rate,
decay_rate,
decay_steps,
is_stair=False
)
使用方式
PyTorch:计算方式为lr*gamma^{epoch}。使用时,优化器作为输入,通过调用step
方法进行学习率的更新。
MindSpore:计算方式为lr*decay_rate^{p},这种动态学习率的调整方式在mindspore里有两种实现方式:exponential_decay_lr
预生成学习率列表,将列表传入优化器;ExponentialDecayLR
则是通过计算图的方式传入优化器中参与训练。
代码示例
# In MindSpore:
from mindspore import nn, Tensor
from mindspore import dtype as mstype
# In MindSpore:exponential_decay_lr
learning_rate = 0.1
decay_rate = 0.9
total_step = 6
step_per_epoch = 2
decay_epoch = 1
output = nn.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch)
print(output)
# out
# [0.1, 0.1, 0.09000000000000001, 0.09000000000000001, 0.08100000000000002, 0.08100000000000002]
# In MindSpore:ExponentialDecayLR
learning_rate = 0.1
decay_rate = 0.9
decay_steps = 4
global_step = Tensor(2, mstype.int32)
exponential_decay_lr = nn.ExponentialDecayLR(learning_rate, decay_rate, decay_steps)
result = exponential_decay_lr(global_step)
print(result)
# out
# 0.09486833
# In torch:
import torch
import numpy as np
from torch import optim
model = torch.nn.Sequential(torch.nn.Linear(20, 1))
optimizer = optim.SGD(model.parameters(), 0.1)
exponential_decay_lr = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
myloss = torch.nn.MSELoss()
dataset = [(torch.tensor(np.random.rand(1, 20).astype(np.float32)), torch.tensor([1.]))]
for epoch in range(5):
for input, target in dataset:
optimizer.zero_grad()
output = model(input)
loss = myloss(output.view(-1), target)
loss.backward()
optimizer.step()
exponential_decay_lr.step()
print(exponential_decay_lr.get_last_lr())
# out
# [0.09000000000000001]
# [0.08100000000000002]
# [0.07290000000000002]
# [0.06561000000000002]
# [0.05904900000000002]