# 比较与torchvision.transforms.RandomSolarize的功能差异 [](https://gitee.com/mindspore/docs/blob/r1.5/docs/mindspore/migration_guide/source_zh_cn/api_mapping/pytorch_diff/RandomSolarize.md) ## torchvision.transforms.RandomSolarize ```python class torchvision.transforms.RandomSolarize( threshold, p=0.5 ) ``` 更多内容详见[torchvision.transforms.RandomSolarize](https://pytorch.org/vision/0.10/transforms.html#torchvision.transforms.RandomSolarize)。 ## mindspore.dataset.vision.c_transforms.RandomSolarize ```python class mindspore.dataset.vision.c_transforms.RandomSolarize( threshold=(0, 255) ) ``` 更多内容详见[mindspore.dataset.vision.c_transforms.RandomSolarize](https://mindspore.cn/docs/api/zh-CN/master/api_python/dataset_vision/mindspore.dataset.vision.c_transforms.RandomSolarize.html#mindspore.dataset.vision.c_transforms.RandomSolarize)。 ## 使用方式 PyTorch:通过反转高于阈值的所有像素值,以给定的概率随机对图像进行曝光操作。 MindSpore:从指定阈值范围内随机选择一个子范围,并将图像像素值调整在子范围内。 ## 代码示例 ```python from PIL import Image from pathlib import Path import numpy as np import matplotlib.pyplot as plt import torchvision.transforms as T import mindspore.dataset.vision.c_transforms as c_vision orig_img = Image.open(Path('.') / 'test.jpg') def show_diff_image(image_original, image_transformed): num = 2 plt.subplot(1, num, 1) plt.imshow(image_original) plt.title("Original image") plt.subplot(1, num, 2) plt.imshow(image_transformed) plt.title("Random Solaried image") plt.show() # In MindSpore, randomly selects a subrange within the specified threshold range and sets the pixel value within the subrange to (255 - pixel). solarizer = c_vision.RandomSolarize(threshold=(10,100)) rand_sola_img = solarizer(orig_img) show_diff_image(orig_img, rand_sola_img) # Out: # Original image and Solarized image are showed with matplotlib tools # In torch, the RandomSolarize transform randomly solarizes the image by inverting all pixel values above the threshold. solarizer = T.RandomSolarize(threshold=192.0) solarized_imgs = solarizer(orig_img) show_diff_image(orig_img, solarized_imgs) # Out: # Original image and Solarized image are showed with matplotlib tools ```