# 比较与torch.nn.functional.normalize的功能差异 [](https://gitee.com/mindspore/docs/blob/r1.5/docs/mindspore/migration_guide/source_zh_cn/api_mapping/pytorch_diff/L2Normalize.md) ## torch.nn.functional.normalize ```python torch.nn.functional.normalize( input, p=2, dim=1, eps=1e-12, out=None ) ``` 更多内容详见[torch.nn.functional.normalize](https://pytorch.org/docs/1.5.0/nn.functional.html#torch.nn.functional.normalize)。 ## mindspore.ops.L2Normalize ```python class mindspore.ops.L2Normalize( axis=0, epsilon=1e-4 )(input_x) ``` 更多内容详见[mindspore.ops.L2Normalize](https://mindspore.cn/docs/api/zh-CN/r1.5/api_python/ops/mindspore.ops.L2Normalize.html#mindspore.ops.L2Normalize)。 ## 使用方式 PyTorch:支持通过指定参数`p`来使用Lp范式。 MindSpore:仅支持L2范式。 ## 代码示例 ```python import mindspore from mindspore import Tensor import mindspore.ops as ops import torch import numpy as np # In MindSpore, you can directly pass data into the function, and the default dimension is 0. l2_normalize = ops.L2Normalize() input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) output = l2_normalize(input_x) print(output) # Out: # [0.2673 0.5345 0.8018] # In torch, parameter p should be set to determine it is a lp normalization, and the default dimension is 1. input_x = torch.tensor(np.array([1.0, 2.0, 3.0])) outputL2 = torch.nn.functional.normalize(input=input_x, p=2, dim=0) outputL3 = torch.nn.functional.normalize(input=input_x, p=3, dim=0) print(outputL2) print(outputL3) # Out: # tensor([0.2673, 0.5345, 0.8018], dtype=torch.float64) # tensor([0.3029, 0.6057, 0.9086], dtype=torch.float64) ```