# 比较与torch.min的功能差异 [](https://gitee.com/mindspore/docs/blob/r1.5/docs/mindspore/migration_guide/source_zh_cn/api_mapping/pytorch_diff/ArgMinWithValue.md) ## torch.min ```python torch.min( input, dim, keepdim=False, out=None ) ``` 更多内容详见[torch.min](https://pytorch.org/docs/1.5.0/torch.html#torch.min)。 ## mindspore.ops.ArgMinWithValue ```python class mindspore.ops.ArgMinWithValue( axis=0, keep_dims=False )(input_x) ``` 更多内容详见[mindspore.ops.ArgMinWithValue](https://mindspore.cn/docs/api/zh-CN/r1.5/api_python/ops/mindspore.ops.ArgMinWithValue.html#mindspore.ops.ArgMinWithValue)。 ## 使用方式 PyTorch:输出为元组(最小值, 最小值的索引)。 MindSpore:输出为元组(最小值的索引, 最小值)。 ## 代码示例 ```python import mindspore from mindspore import Tensor import mindspore.ops as ops import torch import numpy as np # Output tuple(index of min, min). input_x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32) argmin = ops.ArgMinWithValue() index, output = argmin(input_x) print(index) print(output) # Out: # 0 # 0.0 # Output tuple(min, index of min). input_x = torch.tensor([0.0, 0.4, 0.6, 0.7, 0.1]) output, index = torch.min(input_x, 0) print(index) print(output) # Out: # tensor(0) # tensor(0.) ```