Function Differences with torch.nn.BatchNorm1d
torch.nn.BatchNorm1d
class torch.nn.BatchNorm1d(
num_features,
eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True
)
For more information, see torch.nn.BatchNorm1d.
mindspore.nn.BatchNorm1d
class mindspore.nn.BatchNorm1d(
num_features,
eps=1e-05,
momentum=0.9,
affine=True,
gamma_init="ones",
beta_init="zeros",
moving_mean_init="zeros",
moving_var_init="ones",
use_batch_statistics=None)
)
For more information, see mindspore.nn.BatchNorm1d.
Differences
PyTorch:The default value of the momentum parameter used for running_mean and running_var calculation is 0.1.
MindSpore:The default value of the momentum parameter is 0.9, and the momentum relationship with Pytorch is 1-momentum, that is, when Pytorch’s momentum value is 0.2, MindSpore’s momemtum should be 0.8.
Code Example
# The following implements BatchNorm1d with MindSpore.
import numpy as np
import torch
import mindspore.nn as nn
from mindspore import Tensor
net = nn.BatchNorm1d(num_features=4, momentum=0.8)
x = Tensor(np.array([[0.7, 0.5, 0.5, 0.6],
[0.5, 0.4, 0.6, 0.9]]).astype(np.float32))
output = net(x)
print(output)
# Out:
# [[ 0.6999965 0.4999975 0.4999975 0.59999704 ]
# [ 0.4999975 0.399998 0.59999704 0.89999545 ]]
# The following implements BatchNorm1d with torch.
input_x = torch.randn(2, 4)
m = torch.nn.BatchNorm1d(4, momentum=0.2)
output = m(input_x)
print(output)
# Out:
# tensor([[-0.9991, -1.0000, -1.0000, 1.0000],
# [ 0.9991, 1.0000, 1.0000, -1.0000]],
# grad_fn=<NativeBatchNormBackward>)