mindspore.dataset.vision.VerticalFlip
- class mindspore.dataset.vision.VerticalFlip[source]
- Flip the input image vertically. - Supports Ascend hardware acceleration and can be enabled through the .device("Ascend") method. - Raises
- RuntimeError – If given tensor shape is not <H, W> or <…, H, W, C>. 
 - Supported Platforms:
- CPU- Ascend
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.VerticalFlip()] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.VerticalFlip()(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8 - Tutorial Examples:
 - device(device_target='CPU')[source]
- Set the device for the current operator execution. - When the device is Ascend, input type supports uint8 and float32, input channel supports 1 and 3. The input data has a height limit of [4, 8192] and a width limit of [6, 4096]. - Parameters
- device_target (str, optional) – The operator will be executed on this device. Currently supports - CPUand- Ascend. Default:- CPU.
- Raises
- TypeError – If device_target is not of type str. 
- ValueError – If device_target is not within the valid set of ['CPU', 'Ascend']. 
 
 - Supported Platforms:
- CPU- Ascend
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> vertical_flip_op = vision.VerticalFlip().device("Ascend") >>> transforms_list = [vertical_flip_op] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.VerticalFlip().device("Ascend")(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8 - Tutorial Examples: