mindspore.dataset.vision.ResizedCrop
- class mindspore.dataset.vision.ResizedCrop(top, left, height, width, size, interpolation=Inter.BILINEAR)[source]
- Crop the input image at a specific region and resize it to desired size. - Supports Ascend hardware acceleration and can be enabled through the .device("Ascend") method. - Parameters
- top (int) – Horizontal ordinate of the upper left corner of the crop region. 
- left (int) – Vertical ordinate of the upper left corner of the crop region. 
- height (int) – Height of the crop region. 
- width (int) – Width of the cropp region. 
- size (Union[int, Sequence[int, int]]) – - The size of the output image. - If int is provided, the smaller edge of the image will be resized to this value, keeping the image aspect ratio the same. 
- If Sequence[int, int] is provided, it should be (height, width). 
 
- interpolation (Inter, optional) – Image interpolation method defined by - Inter. Default:- Inter.BILINEAR.
 
- Raises
- TypeError – If top is not of type int. 
- ValueError – If top is negative. 
- TypeError – If left is not of type int. 
- ValueError – If left is negative. 
- TypeError – If height is not of type int. 
- ValueError – If height is not positive. 
- TypeError – If width is not of type int. 
- ValueError – If width is not positive. 
- TypeError – If size is not of type int or Sequence[int, int]. 
- ValueError – If size is not posotive. 
- RuntimeError – If shape of the input image is not <H, W> or <H, W, C>. 
 
 - Supported Platforms:
- CPU- Ascend
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import Inter >>> >>> # Use the transform in dataset pipeline mode >>> transforms_list = [vision.ResizedCrop(0, 0, 64, 64, (100, 75), Inter.BILINEAR)] >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 75, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.ResizedCrop(0, 0, 1, 1, (5, 5), Inter.BILINEAR)(data) >>> print(output.shape, output.dtype) (5, 5, 3) uint8 - Tutorial Examples:
 - device(device_target='CPU')[source]
- Set the device for the current operator execution. - When the device is Ascend, input type supports uint8 and float32, input channel supports 1 and 3. The input data has a height limit of [4, 32768] and a width limit of [6, 32768]. - Parameters
- device_target (str, optional) – The operator will be executed on this device. Currently supports - "CPU"and- "Ascend". Default:- "CPU".
- Raises
- TypeError – If device_target is not of type str. 
- ValueError – If device_target is not within the valid set of ["CPU", "Ascend"]. 
 
 - Supported Platforms:
- CPU- Ascend
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import Inter >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> resize_crop_op = vision.ResizedCrop(0, 0, 64, 64, (100, 75)).device("Ascend") >>> transforms_list = [resize_crop_op] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 75, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.ResizedCrop(0, 0, 64, 64, (32, 16), Inter.BILINEAR).device("Ascend")(data) >>> print(output.shape, output.dtype) (32, 16, 3) uint8 - Tutorial Examples: