mindspore.dataset.vision.GaussianBlur
- class mindspore.dataset.vision.GaussianBlur(kernel_size, sigma=None)[source]
- Blur input image with the specified Gaussian kernel. - Supports Ascend hardware acceleration and can be enabled through the .device("Ascend") method. - Parameters
- kernel_size (Union[int, Sequence[int, int]]) – - The size of the Gaussian kernel. Must be positive and odd. - If the input type is int, the value will be used as both the width and height of the Gaussian kernel. 
- If the input type is Sequence[int, int], the two elements will be used as the width and height of the Gaussian kernel respectively. 
 
- sigma (Union[float, Sequence[float, float]], optional) – - The standard deviation of the Gaussian kernel. Must be positive. - If the input type is float, the value will be used as the standard deviation of both the width and height of the Gaussian kernel. 
- If the input type is Sequence[float, float], the two elements will be used as the standard deviation of the width and height of the Gaussian kernel respectively. 
 - Default: - None, the standard deviation of the Gaussian kernel will be obtained by the formula \(((kernel\_size - 1) * 0.5 - 1) * 0.3 + 0.8\) .
 
- Raises
- TypeError – If kernel_size is not of type int or Sequence[int]. 
- TypeError – If sigma is not of type float or Sequence[float]. 
- ValueError – If kernel_size is not positive and odd. 
- ValueError – If sigma is not positive. 
- RuntimeError – If given tensor shape is not <H, W> or <H, W, C>. 
 
 - Supported Platforms:
- CPU- Ascend
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.GaussianBlur(3, 3)] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.array([[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]], dtype=np.uint8).reshape((2, 2, 3)) >>> output = vision.GaussianBlur(3, 3)(data) >>> print(output.shape, output.dtype) (2, 2, 3) uint8 - Tutorial Examples:
 - device(device_target='CPU')[source]
- Set the device for the current operator execution. - When the device is Ascend, the parameter kernel_size only supports values 1, 3, and 5. input shape should be limited from [4, 6] to [8192, 4096]. - Parameters
- device_target (str, optional) – The operator will be executed on this device. Currently supports - "CPU"and- "Ascend". Default:- "CPU".
- Raises
- TypeError – If device_target is not of type str. 
- ValueError – If device_target is not within the valid set of ["CPU", "Ascend"]. 
 
 - Supported Platforms:
- CPU- Ascend
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> blur_op = vision.GaussianBlur(3, 3).device("Ascend") >>> transforms_list = [blur_op] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.GaussianBlur(3, 3).device("Ascend")(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8 - Tutorial Examples: