mindspore.dataset.vision.AdjustSharpness
- class mindspore.dataset.vision.AdjustSharpness(sharpness_factor)[source]
- Adjust the sharpness of the input image. - Supports Ascend hardware acceleration and can be enabled through the .device("Ascend") method. - Parameters
- sharpness_factor (float) – How much to adjust the sharpness, must be non negative. - 0.0gives a blurred image,- 1.0gives the original image while- 2.0increases the sharpness by a factor of 2.
- Raises
- TypeError – If sharpness_factor is not of type float. 
- ValueError – If sharpness_factor is less than - 0.0.
- RuntimeError – If shape of the input image is not <H, W> or <H, W, C>. 
 
 - Supported Platforms:
- CPU- Ascend
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> # create a dataset that reads all files in dataset_dir with 8 threads >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.AdjustSharpness(sharpness_factor=2.0)] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.array([[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]], dtype=np.uint8).reshape((3, 4)) >>> output = vision.AdjustSharpness(sharpness_factor=0)(data) >>> print(output.shape, output.dtype) (3, 4) uint8 - Tutorial Examples:
 - device(device_target='CPU')[source]
- Set the device for the current operator execution. - When the device is Ascend, input type supports uint8 or float32 , input channel supports 1 and 3. The input data has a height limit of [4, 8192] and a width limit of [6, 4096]. - Parameters
- device_target (str, optional) – The operator will be executed on this device. Currently supports - "CPU"and- "Ascend". Default:- "CPU".
- Raises
- TypeError – If device_target is not of type str. 
- ValueError – If device_target is not within the valid set of ["CPU", "Ascend"]. 
 
 - Supported Platforms:
- CPU- Ascend
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> # create a dataset that reads all files in dataset_dir with 8 threads >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.AdjustSharpness(sharpness_factor=2.0).device("Ascend")] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.AdjustSharpness(sharpness_factor=0).device("Ascend")(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8 - Tutorial Examples: