mindspore.dataset.audio.melscale_fbanks
- mindspore.dataset.audio.melscale_fbanks(n_freqs, f_min, f_max, n_mels, sample_rate, norm=NormType.NONE, mel_type=MelType.HTK)[source]
- Create a frequency transformation matrix. - Parameters
- n_freqs (int) – Number of frequencies to highlight/apply. 
- f_min (float) – Minimum of frequency in Hz. 
- f_max (float) – Maximum of frequency in Hz. 
- n_mels (int) – Number of mel filterbanks. 
- sample_rate (int) – Sample rate of the audio waveform. 
- norm (NormType, optional) – Normalization method, can be - NormType.NONEor- NormType.SLANEY. Default:- NormType.NONE.
- mel_type (MelType, optional) – Scale to use, can be - MelType.HTKor- MelType.SLANEY. Default:- MelType.HTK.
 
- Returns
- numpy.ndarray, the frequency transformation matrix with shape ( n_freqs , n_mels ). 
- Raises
- TypeError – If n_freqs is not of type int. 
- ValueError – If n_freqs is a negative number. 
- TypeError – If f_min is not of type float. 
- ValueError – If f_min is greater than f_max . 
- TypeError – If f_max is not of type float. 
- ValueError – If f_max is a negative number. 
- TypeError – If n_mels is not of type int. 
- ValueError – If n_mels is not positive. 
- TypeError – If sample_rate is not of type int. 
- ValueError – If sample_rate is not positive. 
- TypeError – If norm is not of type - mindspore.dataset.audio.NormType.
- TypeError – If mel_type is not of type - mindspore.dataset.audio.MelType.
 
 - Supported Platforms:
- CPU
 - Examples - >>> from mindspore.dataset.audio import melscale_fbanks >>> >>> fbanks = melscale_fbanks(n_freqs=4096, f_min=0, f_max=8000, n_mels=40, sample_rate=16000)