mindspore.dataset.audio.Vol
- class mindspore.dataset.audio.Vol(gain, gain_type=GainType.AMPLITUDE)[source]
- Adjust volume of waveform. - Parameters
- gain (float) – Gain at the boost (or attenuation). If gain_type is - GainType.AMPLITUDE, it is a non negative amplitude ratio. If gain_type is- GainType.POWER, it is a power (voltage squared). If gain_type is- GainType.DB, it is in decibels.
- gain_type (GainType, optional) – Type of gain, can be - GainType.AMPLITUDE,- GainType.POWERor- GainType.DB. Default:- GainType.AMPLITUDE.
 
- Raises
- TypeError – If gain is not of type float. 
- TypeError – If gain_type is not of type - mindspore.dataset.audio.GainType.
- ValueError – If gain is a negative number when gain_type is - GainType.AMPLITUDE.
- ValueError – If gain is not a positive number when gain_type is - GainType.POWER.
- RuntimeError – If input tensor is not in shape of <…, time>. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.audio as audio >>> >>> # Use the transform in dataset pipeline mode >>> waveform = np.random.random([5, 30]) # 5 sample >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"]) >>> transforms = [audio.Vol(gain=10, gain_type=audio.GainType.DB)] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["audio"].shape, item["audio"].dtype) ... break (30,) float64 >>> >>> # Use the transform in eager mode >>> waveform = np.random.random([30]) # 1 sample >>> output = audio.Vol(gain=10, gain_type=audio.GainType.DB)(waveform) >>> print(output.shape, output.dtype) (30,) float64 - Tutorial Examples: