mindspore.dataset.audio.Resample
- class mindspore.dataset.audio.Resample(orig_freq=16000, new_freq=16000, resample_method=ResampleMethod.SINC_INTERPOLATION, lowpass_filter_width=6, rolloff=0.99, beta=None)[source]
- Resample a signal from one frequency to another. A resample method can be given. - Parameters
- orig_freq (float, optional) – The original frequency of the signal, must be positive. Default: - 16000.
- new_freq (float, optional) – The desired frequency, must be positive. Default: - 16000.
- resample_method (ResampleMethod, optional) – The resample method to use, can be - ResampleMethod.SINC_INTERPOLATIONor- ResampleMethod.KAISER_WINDOW. Default:- ResampleMethod.SINC_INTERPOLATION.
- lowpass_filter_width (int, optional) – Controls the sharpness of the filter, more means sharper but less efficient, must be positive. Default: - 6.
- rolloff (float, optional) – The roll-off frequency of the filter, as a fraction of the Nyquist. Lower values reduce anti-aliasing, but also reduce some of the highest frequencies, in range of (0, 1]. Default: - 0.99.
- beta (float, optional) – The shape parameter used for kaiser window. Default: - None, will use- 14.769656459379492.
 
- Raises
- TypeError – If orig_freq is not of type float. 
- ValueError – If orig_freq is not a positive number. 
- TypeError – If new_freq is not of type float. 
- ValueError – If new_freq is not a positive number. 
- TypeError – If resample_method is not of type - mindspore.dataset.audio.ResampleMethod.
- TypeError – If lowpass_filter_width is not of type int. 
- ValueError – If lowpass_filter_width is not a positive number. 
- TypeError – If rolloff is not of type float. 
- ValueError – If rolloff is not in range of (0, 1]. 
- RuntimeError – If input tensor is not in shape of <…, time>. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.audio as audio >>> >>> # Use the transform in dataset pipeline mode >>> waveform = np.random.random([5, 16, 30]) # 5 samples >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"]) >>> transforms = [audio.Resample(orig_freq=48000, new_freq=16000, ... resample_method=audio.ResampleMethod.SINC_INTERPOLATION, ... lowpass_filter_width=6, rolloff=0.99, beta=None)] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["audio"].shape, item["audio"].dtype) ... break (16, 10) float64 >>> >>> # Use the transform in eager mode >>> waveform = np.random.random([16, 30]) # 1 sample >>> output = audio.Resample(orig_freq=48000, new_freq=16000, ... resample_method=audio.ResampleMethod.SINC_INTERPOLATION, ... lowpass_filter_width=6, rolloff=0.99, beta=None)(waveform) >>> print(output.shape, output.dtype) (16, 10) float64 - Tutorial Examples: