mindspore.dataset.audio.Fade
- class mindspore.dataset.audio.Fade(fade_in_len=0, fade_out_len=0, fade_shape=FadeShape.LINEAR)[source]
- Add a fade in and/or fade out to an waveform. - Parameters
- fade_in_len (int, optional) – Length of fade-in (time frames), which must be non-negative. Default: - 0.
- fade_out_len (int, optional) – Length of fade-out (time frames), which must be non-negative. Default: - 0.
- fade_shape (FadeShape, optional) – - Shape of fade, five different types can be chosen as defined in FadeShape. Default: - FadeShape.LINEAR.- FadeShape.QUARTER_SINE, means it tend to 0 in an quarter sin function.
- FadeShape.HALF_SINE, means it tend to 0 in an half sin function.
- FadeShape.LINEAR, means it linear to 0.
- FadeShape.LOGARITHMIC, means it tend to 0 in an logrithmic function.
- FadeShape.EXPONENTIAL, means it tend to 0 in an exponential function.
 
 
- Raises
- RuntimeError – If fade_in_len exceeds waveform length. 
- RuntimeError – If fade_out_len exceeds waveform length. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.audio as audio >>> >>> # Use the transform in dataset pipeline mode >>> waveform = np.random.random([5, 16]) # 5 samples >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"]) >>> transforms = [audio.Fade(fade_in_len=3, fade_out_len=2, fade_shape=audio.FadeShape.LINEAR)] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["audio"].shape, item["audio"].dtype) ... break (16,) float64 >>> >>> # Use the transform in eager mode >>> waveform = np.random.random([16]) # 1 sample >>> output = audio.Fade(fade_in_len=3, fade_out_len=2, fade_shape=audio.FadeShape.LINEAR)(waveform) >>> print(output.shape, output.dtype) (16,) float64 - Tutorial Examples: