Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.dropout3d

mindspore.ops.dropout3d(input, p=0.5, training=True)[source]

During training, randomly zeroes some channels of the input tensor with probability p from a Bernoulli distribution(For a 5-dimensional tensor with a shape of NCDHW, the channel feature map refers to a 3-dimensional feature map with a shape of DHW).

For example, the j_th channel of the i_th sample in the batched input is a to-be-processed 3D tensor input[i,j]. Each channel will be zeroed out independently on every forward call which based on Bernoulli distribution probability p.

dropout3d can improve the independence between channel feature maps.

Parameters
  • input (Tensor) – A 5D tensor with shape (N,C,D,H,W), where N is the batch size, C is the number of channels, D is the feature depth, H is the feature height, and W is the feature width. The data type must be int8, int16, int32, int64, float16, float32 or float64.

  • p (float) – The dropping probability of a channel, between 0 and 1, e.g. p = 0.8, which means dropping out 80% of channels. Default: 0.5 .

  • training (bool) – If training is True, applying dropout, otherwise, not applying. Default: True .

Returns

Tensor, output, with the same shape and data type as input.

Raises
  • TypeError – If input is not a Tensor.

  • TypeError – If dtype of input is not int8, int16, int32, int64, float16, float32 or float64.

  • TypeError – If the data type of p is not float.

  • ValueError – If p is out of the range [0.0, 1.0].

  • ValueError – If input shape is not 5D.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> input = Tensor(np.ones([2, 1, 2, 1, 2]), mindspore.float32)
>>> output = ops.dropout3d(input, 0.5)
>>> print(output.shape)
(2, 1, 2, 1, 2)