mindspore.ops.SpaceToDepth
- class mindspore.ops.SpaceToDepth(block_size)[source]
Rearrange blocks of spatial data into depth.
The output tensor's height dimension is
.The output tensor's weight dimension is
.The depth of output tensor is
.The input tensor's height and width must be divisible by block_size. The data format is "NCHW".
- Parameters
block_size (int) – The block size used to divide spatial data. It must be >= 2.
- Inputs:
x (Tensor) - The target tensor. The data type is Number. It must be a 4-D tensor.
- Outputs:
Tensor, the same data type as x. It must be a 4-D tensor. Tensor of shape
.
- Raises
TypeError – If block_size is not an int.
ValueError – If block_size is less than 2.
ValueError – If length of shape of x is not equal to 4.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.random.rand(1,3,2,2), mindspore.float32) >>> block_size = 2 >>> space_to_depth = ops.SpaceToDepth(block_size) >>> output = space_to_depth(x) >>> print(output.shape) (1, 12, 1, 1)