mindspore.ops.LRN
- class mindspore.ops.LRN(depth_radius=5, bias=1.0, alpha=1.0, beta=0.5, norm_region='ACROSS_CHANNELS')[source]
Local Response Normalization.
Warning
LRN is deprecated on Ascend due to potential accuracy problem. It's recommended to use other normalization methods, e.g.
mindspore.ops.BatchNorm
.where the
indicates the specific value of the pixel corresponding to in feature map; where the indicates the depth_radius; where the indicates the bias; where the indicates the alpha; where the indicates the beta.- Parameters
depth_radius (int) – Half-width of the 1-D normalization window with the shape of 0-D. Default:
5
.bias (float) – An offset (usually positive to avoid dividing by 0). Default:
1.0
.alpha (float) – A scale factor, usually positive. Default:
1.0
.beta (float) – An exponent. Default:
0.5
.norm_region (str) – Specifies normalization region. Options:
"ACROSS_CHANNELS"
. Default:"ACROSS_CHANNELS"
.
- Inputs:
x (Tensor) - A 4-D Tensor with float16 or float32 data type.
- Outputs:
Tensor, with the same shape and data type as x.
- Raises
- Supported Platforms:
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([[[[0.1], [0.2]], ... [[0.3], [0.4]]]]), mindspore.float32) >>> lrn = ops.LRN() >>> output = lrn(x) >>> print(output) [[[[0.09534626] [0.1825742 ]] [[0.2860388 ] [0.3651484 ]]]]