mindspore.nn.polynomial_decay_lr
- mindspore.nn.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power, update_decay_epoch=False)[source]
Calculates learning rate base on polynomial decay function. The learning rate for each step will be stored in a list.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
Where:
If update_decay_epoch is true, update the value of
every epoch. The formula is:- Parameters
learning_rate (float) – The initial value of learning rate.
end_learning_rate (float) – The end value of learning rate.
total_step (int) – The total number of steps.
step_per_epoch (int) – The number of steps in per epoch.
decay_epoch (int) – Number of epochs to decay over.
power (float) – The power of polynomial. It must be greater than 0.
update_decay_epoch (bool) – If
true
, update decay_epoch. Default:False
.
- Returns
list[float]. The size of list is total_step.
- Raises
TypeError – If learning_rate or end_learning_rate or power is not a float.
TypeError – If total_step or step_per_epoch or decay_epoch is not an int.
TypeError – If update_decay_epoch is not a bool.
ValueError – If learning_rate or power is not greater than 0.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore.nn as nn >>> >>> lr = 0.1 >>> end_learning_rate = 0.01 >>> total_step = 6 >>> step_per_epoch = 2 >>> decay_epoch = 2 >>> power = 0.5 >>> lr = nn.polynomial_decay_lr(lr, end_learning_rate, total_step, step_per_epoch, decay_epoch, power) >>> net = nn.Dense(2, 3) >>> optim = nn.SGD(net.trainable_params(), learning_rate=lr)