Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.SoftMarginLoss

class mindspore.nn.SoftMarginLoss(reduction='mean')[source]

A loss class for two-class classification problems.

SoftMarginLoss creates a criterion that optimizes a two-class classification logistic loss between input tensor x and labels tensor y (containing 1 or -1).

loss(x,y)=ilog(1+exp(y[i]x[i]))x.nelement()

x.nelement() represents the number of element of x .

Parameters

reduction (str, optional) –

Apply specific reduction method to the output: 'none' , 'mean' , 'sum' . Default: 'mean' .

  • 'none': no reduction will be applied.

  • 'mean': compute and return the mean of elements in the output.

  • 'sum': the output elements will be summed.

Inputs:
  • logits (Tensor) - Predict data. Data type must be float16 or float32.

  • labels (Tensor) - Ground truth data, with the same type and shape as logits.

Outputs:

Tensor or Scalar, if reduction is "none", its shape is the same as logits. Otherwise, a scalar value will be returned.

Raises
  • TypeError – If logits or labels is not a Tensor.

  • TypeError – If dtype of logits or labels is neither float16 nor float32.

  • ValueError – If shape of logits is not the same as labels.

  • ValueError – If reduction is not one of 'none', 'mean', 'sum'.

Supported Platforms:

Ascend GPU

Examples

>>> import mindspore
>>> from mindspore import Tensor, nn
>>> import numpy as np
>>> loss = nn.SoftMarginLoss()
>>> logits = Tensor(np.array([[0.3, 0.7], [0.5, 0.5]]), mindspore.float32)
>>> labels = Tensor(np.array([[-1, 1], [1, -1]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.6764238