mindspore.mint.nn.ZeroPad2d

class mindspore.mint.nn.ZeroPad2d(padding)[source]

Pad the last 2 dimension of input tensor with 0 using padding.

For more information, please refer to mindspore.mint.nn.functional.pad().

Warning

This is an experimental API that is subject to change or deletion.

Parameters

padding (Union[int, tuple, list]) – Specifies padding size.

Inputs:
  • input (Tensor) - shape is \((N, *)\), where \(*\) means, any number of additional dimensions.

Outputs:

Tensor, the tensor after padding.

Raises
  • TypeError – If padding is not an integer of a list or tuple of 4 integers.

  • TypeError – If input is not Tensor.

  • ValueError – If padding contains negative value.

  • ValueError – If padding is a tuple or list, and the length does not match the tensor dimension.

Supported Platforms:

Ascend

Examples

>>> import numpy as np
>>> import mindspore as ms
>>> x = np.ones(shape=(1, 2, 3, 4)).astype(np.float32)
>>> x = ms.Tensor(x)
>>> padding = (1, 1, 0, 1)
>>> pad = ms.mint.nn.ZeroPad2d(padding)
>>> out = pad(x)
>>> print(out)
[[[[0. 1. 1. 1. 1. 0.]
   [0. 1. 1. 1. 1. 0.]
   [0. 1. 1. 1. 1. 0.]
   [0. 0. 0. 0. 0. 0.]]
  [[0. 1. 1. 1. 1. 0.]
   [0. 1. 1. 1. 1. 0.]
   [0. 1. 1. 1. 1. 0.]
   [0. 0. 0. 0. 0. 0.]]]]
>>> print(out.shape)
(1, 2, 4, 6)