mindspore.mint.min

mindspore.mint.min(input) Tensor[source]

Returns the minimum value of the input tensor.

Parameters

input (Tensor) – The input tensor.

Returns

Scalar Tensor with the same dtype as input, the minimum value of the input.

Supported Platforms:

Ascend

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, mint
>>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
>>> output = mint.min(x)
>>> print(output)
0.0
mindspore.mint.min(input, dim, keepdim=False) Tensor[source]

Calculates the minimum value along with the given dim for the input tensor, and returns the minimum values and indices.

Parameters
  • input (Tensor) – \((input_1, input_2, ..., input_N)\) , Complex tensor is not supported.

  • dim (int) – The dimension to reduce.

  • keepdim (bool, optional) – Whether to reduce dimension, if True the output will keep the same dimension as the input, the output will reduce dimension if false. Default: False.

Returns

tuple (Tensor), tuple of 2 tensors, containing the minimum value of the self tensor along the given dimension dim and the corresponding index.

  • values (Tensor) - The minimum value of input tensor, with the same shape as index, and same dtype as input.

  • index (Tensor) - The index for the minimum value of the input tensor, with dtype int64. If keepdim is True , the shape of output tensors is \((input_1, input_2, ..., input_{dim-1}, 1, input_{dim+1}, ..., input_N)\). Otherwise, the shape is \((input_1, input_2, ..., input_{dim-1}, input_{dim+1}, ..., input_N)\) .

Raises
Supported Platforms:

Ascend

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, mint
>>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
>>> output, index = mint.min(x, 0, keepdim=True)
>>> print(output, index)
[0.0] [0]
mindspore.mint.min(input, other) Tensor[source]

For details, please refer to mindspore.mint.minimum().