mindspore.mint.addmv
- mindspore.mint.addmv(input, mat, vec, *, beta=1, alpha=1)[source]
Performs a matrix-vector product of mat and vec, and add the input vector input to the final result.
If mat is a tensor of size \((N, M)\) , vec is a 1-D tensor of size \(M\) , then input must be broadcastable with a 1-D tensor of size \(N\) . In this case, output is a 1-D Tensor of size \(N\) .
\[output = eta input + lpha (mat @ vec)\]Warning
This is an experimental API that is subject to change or deletion.
- Parameters
- Keyword Arguments
- Returns
Tensor, with a shape of \((N,)\) , and its dtype is the same as input.
- Raises
TypeError – If dtype of input, mat or vec is not tensor.
TypeError – If dtypes of mat and vec are not the same.
ValueError – If mat is not a 2-D tensor.
ValueError – If vec is not a 1-D tensor.
- Supported Platforms:
Ascend
Examples
>>> import numpy as np >>> from mindspore import Tensor, mint >>> input = Tensor(np.array([2., 3.]).astype(np.float32)) >>> mat = Tensor(np.array([[2., 5., 3.], [4., 2., 2.]]).astype(np.float32)) >>> vec = Tensor(np.array([3., 2., 4.]).astype(np.float32)) >>> output = mint.addmv(input, mat, vec) >>> print(output) [30. 27.]