Overview of Migration Guide

View Source On Gitee

This migration guide contains the complete steps for migrating neural networks to MindSpore from other machine learning frameworks, mainly PyTorch.

graph LR A(Overview)-->B(migration process) B-->|Step 1|E(<font color=blue>Environmental Preparation</font>) E-.-text1(MindSpore Installation) E-.-text2(AI Platform ModelArts) B-->|Step 2|F(<font color=blue>Model Analysis and Preparation</font>) F-.-text3(Reproducing algorithm, analyzing API compliance using MindSpore Dev Toolkit and analyzing function compliance.) B-->|Step 3|G(<font color=blue>Network Constructing Comparison</font>) G-->K(<font color=blue>Dataset</font>) K-.-text4(Aligning the process of dataset loading, augmentation and reading) G-->L(<font color=blue>Network Constructing</font>) L-.-text5(Aligning the network) G-->P(<font color=blue>Loss Function</font>) P-.-text6(Aligning the loss function) G-->M(<font color=blue>Learning Rate and Optimizer</font>) M-.-text7(Aligning the optimizer and learning rate strategy) G-->N(<font color=blue>Gradient</font>) N-.-text8(Aligning the reverse gradients) G-->O(<font color=blue>Training and Evaluation Process</font>) O-.-text9(Aligning the process of training and evaluation) B-->|Step 4|H(<font color=blue>Function Debugging</font>) H-.-text10(Functional alignment) B-->|Step 5|I(<font color=blue>Precision Tuning</font>) I-.-text11(Precision alignment) B-->|Step 6|J(<font color=blue>Performance Tuning</font>) J-.-text12(Performance Alignment) A-->C(<font color=blue>A Migration Sample</font>) C-.-text13(The network migration sample, taking ResNet50 as an example.) A-->D(<font color=blue>FAQs</font>) D-.-text14(Provides the frequently-asked questions and corresponding solutions in migration process.) click C "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/sample_code.html" click D "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/faq.html" click E "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/enveriment_preparation.html" click F "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/analysis_and_preparation.html" click G "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/model_development/model_development.html" click H "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/debug_and_tune.html#function-debugging" click I "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/debug_and_tune.html#precision-tuning" click J "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/debug_and_tune.html#performance-tuning" click K "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/model_development/dataset.html" click L "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/model_development/model_and_cell.html" click M "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/model_development/learning_rate_and_optimizer.html" click N "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/model_development/gradient.html" click O "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/model_development/training_and_evaluation.html" click P "https://www.mindspore.cn/docs/en/r2.4.10/migration_guide/model_development/loss_function.html"