Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.AvgPool

class mindspore.ops.AvgPool(kernel_size=1, strides=1, pad_mode='VALID', data_format='NCHW')[source]

Average pooling operation.

Refer to mindspore.ops.avg_pool2d() for more details.

Parameters
  • kernel_size (Union[int, tuple[int]]) – The size of kernel used to take the average value, is an int number that represents height and width of the kernel, or a tuple of two int numbers that represent height and width respectively. Default: 1 .

  • strides (Union[int, tuple[int]]) – The distance of kernel moving, an int number that represents the height and width of movement are both strides, or a tuple of two int numbers that represent height and width of movement respectively. Default: 1 .

  • pad_mode (str, optional) –

    Specifies the padding mode with a padding value of 0. It can be set to: "SAME" or "VALID" . Default: "VALID" .

    • "SAME": Pad the input around its edges so that the shape of input and output are the same when stride is set to 1. The amount of padding to is calculated by the operator internally, If the amount is even, it is uniformly distributed around the input, if it is odd, the excess amount goes to the right/bottom side.

    • "valid": No padding is applied to the input, and the output returns the maximum possible height and width. Extra pixels that could not complete a full stride will be discarded.

  • data_format (str, optional) – The format of input and output data. It should be 'NHWC' or 'NCHW' . Default: 'NCHW' .

Inputs:
  • x (Tensor) - Tensor of shape (N,Cin,Hin,Win). Supported dtypes: float16, float32, float64.

Outputs:

Tensor, with shape (N,Cout,Hout,Wout).

Raises
  • TypeError – If kernel_size or strides is neither int nor tuple.

  • TypeError – If dtype of x is not float16, float32 or float64.

  • ValueError – If kernel_size or strides is less than 1.

  • ValueError – If pad_mode is neither 'valid' nor 'same' with not case sensitive.

  • ValueError – If data_format is neither 'NCHW' nor 'NHWC'.

  • ValueError – If length of shape of x is not equal to 4.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops, nn
>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.avgpool_op = ops.AvgPool(pad_mode='VALID', kernel_size=2, strides=1)
...
...     def construct(self, x):
...         result = self.avgpool_op(x)
...         return result
...
>>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4), mindspore.float32)
>>> net = Net()
>>> output = net(x)
>>> print(output)
[[[[ 2.5   3.5   4.5]
   [ 6.5   7.5   8.5]]
  [[14.5  15.5  16.5]
   [18.5  19.5  20.5]]
  [[26.5  27.5  28.5]
   [30.5  31.5  32.5]]]]