Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.mint.cummax

mindspore.mint.cummax(input, dim)[source]

Returns a tuple (values, indices) where values is the cumulative maximum value of input Tensor input along the dimension dim, and indices is the index location of each maximum value.

yi=max(x1,x2,...,xi)
Parameters
  • input (Tensor) – The input Tensor. Rank of input must be greater than 0.

  • dim (int) – The dimension to do the operation over. The value of dim must be in the range [-input.ndim, input.ndim - 1].

Returns

tuple [Tensor], tuple of 2 Tensors, containing the cumulative maximum of elements and the index. The shape of each output tensor is the same as that of input input.

Raises
  • TypeError – If input is not a Tensor.

  • TypeError – If dim is not an int.

  • ValueError – If dim is out the range of [-input.ndim, input.ndim - 1].

Note

O2 mode is not supported in Ascend.

Supported Platforms:

Ascend

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore import mint
>>> x = Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))
>>> output = mint.cummax(x, dim=0)
>>> print(output[0])
[[ 3.  4.  6. 10.]
 [ 3.  6.  7. 10.]
 [ 4.  6.  8. 10.]
 [ 4.  6.  8. 10.]]
>>> print(output[1])
[[0 0 0 0]
 [0 1 1 0]
 [2 1 2 0]
 [2 1 2 0]]