Source code for mindspore.train.loss_scale_manager

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Loss scale manager abstract class."""
from __future__ import absolute_import

from mindspore import _checkparam as validator
from mindspore import nn


[docs]class LossScaleManager: """ Loss scale (Magnification factor of gradients when mix precision is used) manager abstract class when using mixed precision. Derived class needs to implement all of its methods. `get_loss_scale` is used to get current loss scale value. `update_loss_scale` is used to update loss scale value, `update_loss_scale` will be called during the training. `get_update_cell` is used to get the instance of :class:`mindspore.nn.Cell` that is used to update the loss scale, the instance will be called during the training. Currently, the `get_update_cell` is mostly used. For example, :class:`mindspore.amp.FixedLossScaleManager` and :class:`mindspore.amp.DynamicLossScaleManager`. """
[docs] def get_loss_scale(self): """Get the value of loss scale, which is the amplification factor of the gradients."""
[docs] def update_loss_scale(self, overflow): """ Update the loss scale value according to the status of `overflow`. Args: overflow (bool): Whether the overflow occurs during the training. """
[docs] def get_update_cell(self): """Get the instance of :class:`mindspore.nn.Cell` that is used to update the loss scale."""
[docs]class FixedLossScaleManager(LossScaleManager): """ Loss scale (Magnification factor of gradients when mix precision is used) manager with a fixed loss scale value, inherits from :class:`mindspore.amp.LossScaleManager`. Args: loss_scale (float): Magnification factor of gradients. Note that if `drop_overflow_update` is set to ``False`` , the value of `loss_scale` in optimizer should be set to the same as here. Default: ``128.0`` . drop_overflow_update (bool): Whether to execute optimizer if there is an overflow. If ``True`` , the optimizer will not executed when overflow occurs. Default: ``True`` . Examples: >>> import mindspore as ms >>> from mindspore import amp, nn >>> >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/r2.4.10/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> loss_scale = 1024.0 >>> loss_scale_manager = amp.FixedLossScaleManager(loss_scale, False) >>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9, loss_scale=loss_scale) >>> model = ms.Model(net, loss_scale_manager=loss_scale_manager, optimizer=optim) """ def __init__(self, loss_scale=128.0, drop_overflow_update=True): if loss_scale < 1: raise ValueError("The argument 'loss_scale' must be >= 1, " "but got {}".format(loss_scale)) self._loss_scale = loss_scale self._drop_overflow_update = drop_overflow_update
[docs] def get_loss_scale(self): """ Get loss scale value. Returns: bool, `loss_scale` value. """ return self._loss_scale
[docs] def get_drop_overflow_update(self): """ Get `drop_overflow_update`, whether to drop optimizer update for current step when there is an overflow. Returns: bool, `drop_overflow_update` value. """ return self._drop_overflow_update
[docs] def update_loss_scale(self, overflow): """ Update loss scale value. The interface at :class:`mindspore.amp.FixedLossScaleManager` will do nothing. Args: overflow (bool): Whether it overflows. """
[docs] def get_update_cell(self): """ Returns the instance of :class:`mindspore.nn.Cell` that used to update the loss scale which will be called at :class:`mindspore.nn.TrainOneStepWithLossScaleCell`. As the loss scale is fixed in this class, the instance will do nothing. Returns: None or :class:`mindspore.nn.FixedLossScaleUpdateCell`. Instance of :class:`mindspore.nn.FixedLossScaleUpdateCell` when `drop_overflow_update` is True. None when `drop_overflow_update` is False. """ if not self._drop_overflow_update: return None return nn.FixedLossScaleUpdateCell(self._loss_scale)
[docs]class DynamicLossScaleManager(LossScaleManager): """ Loss scale(Magnification factor of gradients when mix precision is used) manager with loss scale dynamically adjusted, inherits from :class:`mindspore.amp.LossScaleManager`. Args: init_loss_scale (float): Initialize loss scale. Default: ``2 ** 24`` . scale_factor (int): Coefficient of increase and decrease. Default: ``2`` . scale_window (int): Maximum continuous normal steps when there is no overflow. Default: ``2000`` . Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore import amp, nn >>> >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/r2.4.10/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> loss_scale_manager = amp.DynamicLossScaleManager() >>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> model = ms.Model(net, loss_scale_manager=loss_scale_manager, optimizer=optim) """ def __init__(self, init_loss_scale=2 ** 24, scale_factor=2, scale_window=2000): if init_loss_scale < 1.0: raise ValueError("The argument 'init_loss_scale' must be > 1, but got {}".format(init_loss_scale)) self.loss_scale = init_loss_scale validator.check_positive_int(scale_window, "scale_window", self.__class__.__name__) self.scale_window = scale_window if scale_factor <= 0: raise ValueError("The argument 'scale_factor' must be > 0, but got {}".format(scale_factor)) self.scale_factor = scale_factor self.increase_ratio = scale_factor self.decrease_ratio = 1 / scale_factor self.cur_iter = 1 self.last_overflow_iter = 0 self.bad_step_max = 1000 self.bad_step = 0
[docs] def get_loss_scale(self): """ Get the current loss scale value. Returns: float, `loss_scale` value. """ return self.loss_scale
[docs] def update_loss_scale(self, overflow): """ Update the loss scale value according to the status of `overflow`. If overflow occurs, decrease loss scale per `scale_window`, otherwise, increase the loss scale. Args: overflow (bool): Whether it overflows. """ if overflow: self.loss_scale = max(self.loss_scale * self.decrease_ratio, 1) self.last_overflow_iter = self.cur_iter self.bad_step += 1 else: if (self.cur_iter - self.last_overflow_iter) % self.scale_window == 0: self.loss_scale *= self.increase_ratio self.bad_step = 0 if self.bad_step > self.bad_step_max: raise RuntimeError("Dynamic loss scale Continuous overflow ", self.bad_step, " times, has exceeded maximum threshold.") self.cur_iter += 1
[docs] def get_drop_overflow_update(self): """ Whether to drop optimizer update for current step when there is an overflow. Returns: bool, always True. """ return True
[docs] def get_update_cell(self): """ Returns the instance of :class:`mindspore.nn.Cell` that is used to update the loss scale which will be called at :class:`mindspore.nn.TrainOneStepWithLossScaleCell`. Returns: :class:`mindspore.nn.DynamicLossScaleUpdateCell`. """ return nn.DynamicLossScaleUpdateCell(self.loss_scale, self.scale_factor, self.scale_window)