# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""backup and restore related classes and functions."""
from __future__ import absolute_import
import os
import stat
from mindspore import log as logger
from mindspore.train.serialization import load_checkpoint, save_checkpoint
from mindspore.train.callback._callback import Callback
from mindspore.train._utils import _make_directory
from mindspore import _checkparam as Validator
[docs]class BackupAndRestore(Callback):
"""
Callback to back up and restore the parameters during training.
Note:
This function can only use in training.
Args:
backup_dir (str): Path to store and load the checkpoint file.
save_freq (Union["epoch", int]): When set to ``"epoch"`` the callback saves the checkpoint at the end of
each epoch. When set to an integer, the callback saves the checkpoint
every `save_freq` epoch. Default: ``"epoch"`` .
delete_checkpoint (bool): If `delete_checkpoint=True`, the checkpoint will be deleted after
training is finished. Default: ``True`` .
Raises:
ValueError: If backup_dir is not str.
ValueError: If save_freq is not ``"epoch"`` or int.
ValueError: If delete_checkpoint is not bool.
Examples:
>>> from mindspore import nn
>>> from mindspore.train import Model, BackupAndRestore, RunContext
>>>
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.4.10/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
>>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim)
>>> # Create the dataset taking MNIST as an example. Refer to
>>> # https://gitee.com/mindspore/docs/blob/r2.4.10/docs/mindspore/code/mnist.py
>>> dataset = create_dataset()
>>> backup_ckpt = BackupAndRestore("backup")
>>> model.train(10, dataset, callbacks=backup_ckpt)
"""
def __init__(self, backup_dir, save_freq="epoch", delete_checkpoint=True):
super(BackupAndRestore, self).__init__()
ckpt_dir = _make_directory(backup_dir)
self.backup_file = os.path.join(ckpt_dir, 'backup.ckpt')
if save_freq != "epoch":
self.save_freq = Validator.check_positive_int(save_freq)
else:
self.save_freq = 1
self.delete_checkpoint = Validator.check_bool(delete_checkpoint)
[docs] def on_train_begin(self, run_context):
"""
Load the backup checkpoint file at the beginning of epoch.
Args:
run_context (RunContext): Context of the process running. For more details,
please refer to :class:`mindspore.train.RunContext`.
"""
if os.path.exists(self.backup_file):
cb_params = run_context.original_args()
train_net = cb_params.train_network
logger.info("Restore checkpoint file is {}, load checkpoint into train net.".format(self.backup_file))
load_checkpoint(self.backup_file, net=train_net)
[docs] def on_train_epoch_end(self, run_context):
"""
Backup checkpoint file at the end of train epoch.
Args:
run_context (RunContext): Context of the process running. For more details,
please refer to :class:`mindspore.train.RunContext`.
"""
cb_params = run_context.original_args()
cur_epoch_num = cb_params.cur_epoch_num
if cur_epoch_num % self.save_freq == 0:
train_net = cb_params.train_network
logger.info("Train task end, backup checkpoint file: {}.".format(self.backup_file))
save_checkpoint(train_net, self.backup_file)
[docs] def on_train_end(self, run_context):
"""
Deleted checkpoint file at the end of train.
Args:
run_context (RunContext): Context of the process running. For more details,
please refer to :class:`mindspore.train.RunContext`.
"""
run_context.original_args()
cb_params = run_context.original_args()
cur_epoch_num = cb_params.cur_epoch_num
if self.delete_checkpoint:
logger.info("Delete restore checkpoint file {} at {} epoch.".format(self.backup_file, cur_epoch_num))
os.chmod(self.backup_file, stat.S_IWRITE)
os.remove(self.backup_file)