Source code for mindspore.mint.nn

# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Neural Networks Cells.

Predefined building blocks or computing units to construct neural networks.
"""
from __future__ import absolute_import
import mindspore.ops as ops
from mindspore.mint.nn import functional as F
from mindspore.nn.cell import Cell
from mindspore.nn import EmbeddingExt as Embedding, MaxPool2dExt as MaxPool2d, LayerNormExt as LayerNorm, Linear

# 1

# 2

# 3
from mindspore.nn.layer.basic import Identity
# 4

# 5

# 6
from mindspore.nn.layer.basic import UnfoldExt as Unfold
# 7
from mindspore.nn.layer.basic import Fold
# 8
from mindspore.nn.layer.activation import SoftmaxExt as Softmax
# 9
from mindspore.nn.layer.basic import UpsampleExt as Upsample
# 10

# 11
from mindspore.nn.layer import ReLU

# 12

# 13

# 14
from mindspore.nn.layer.basic import DropoutExt as Dropout
# 15

# 16
from mindspore.nn.layer import LogSoftmaxExt as LogSoftmax
# 17

# 18
from mindspore.nn.layer import PReLUExt as PReLU
# 19

# 20

# 21

# 22

# 23

# 24

# 25

# 26

# 27

# 28

# 29

# 30

# 31

# 32

# 33

# 34

# 35

# 36

# 37

# 38

# 39

# 40
from mindspore.mint.nn.layer.normalization import GroupNorm
from mindspore.mint.nn.layer.normalization import LayerNorm
# 41

# 42

# 43

# 44

# 45

# 46
from mindspore.mint.nn.layer.activation import SiLU, LogSigmoid

# 47

# 48

# 49

# 50

# 51

# 52

# 53

# 54

# 55

# 56

# 57

# 58

# 59

# 60

# 61

# 62

# 63

# 64

# 65

# 66

# 67

# 68

# 69

# 70

# 71

# 72

# 73

# 74

# 75

# 76

# 77

# 78

# 79

# 80

# 81

# 82

# 83

# 84

# 85

# 86

# 87

# 88

# 89

# 90

# 91

# 92

# 93

# 94

# 95

# 96

# 97

# 98

# 99
from mindspore.nn.layer import AvgPool2dExt as AvgPool2d
# 100
from mindspore.nn.layer import SoftShrink as Softshrink
# 159

# 220
from mindspore.nn.layer import HShrink as Hardshrink
# 221
from mindspore.nn.layer import HSigmoid as Hardsigmoid
# 222
from mindspore.nn.layer import HSwish as Hardswish
# 238
from mindspore.nn.loss import L1LossExt as L1Loss

# 257

# 258
from mindspore.ops.function.nn_func import mse_loss_ext


# 674
from mindspore.mint.nn.layer.normalization import BatchNorm1d

# 675
from mindspore.mint.nn.layer.normalization import BatchNorm2d

# 676
from mindspore.mint.nn.layer.normalization import BatchNorm3d

from mindspore.mint.nn.layer.pooling import AdaptiveAvgPool1d

from mindspore.mint.nn.layer.pooling import AdaptiveAvgPool2d


[docs]class BCEWithLogitsLoss(Cell): r""" Adds sigmoid activation function to `input` as logits, and uses this logits to compute binary cross entropy between the logits and the target. Sets input `input` as :math:`X`, input `target` as :math:`Y`, output as :math:`L`. Then, .. math:: p_{ij} = sigmoid(X_{ij}) = \frac{1}{1 + e^{-X_{ij}}} .. math:: L_{ij} = -[Y_{ij} \cdot \log(p_{ij}) + (1 - Y_{ij}) \cdot \log(1 - p_{ij})] Then, .. math:: \ell(x, y) = \begin{cases} L, & \text{if reduction} = \text{'none';}\\ \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{'sum'.} \end{cases} Args: weight (Tensor, optional): A rescaling weight applied to the loss of each batch element. If not None, it can be broadcast to a tensor with shape of `target`, data type must be float16, float32 or bfloat16(only Atlas A2 series products are supported). Default: ``None`` . reduction (str, optional): Apply specific reduction method to the output: ``'none'`` , ``'mean'`` , ``'sum'`` . Default: ``'mean'`` . - ``'none'``: no reduction will be applied. - ``'mean'``: compute and return the weighted mean of elements in the output. - ``'sum'``: the output elements will be summed. pos_weight (Tensor, optional): A weight of positive examples. Must be a vector with length equal to the number of classes. If not None, it must be broadcast to a tensor with shape of `input`, data type must be float16, float32 or bfloat16(only Atlas A2 series products are supported). Default: ``None`` . Inputs: - **input** (Tensor) - Input `input` with shape :math:`(N, *)` where :math:`*` means, any number of additional dimensions. The data type must be float16, float32 or bfloat16(only Atlas A2 series products are supported). - **target** (Tensor) - Ground truth label with shape :math:`(N, *)` where :math:`*` means, any number of additional dimensions. The same shape and data type as `input`. Outputs: Tensor or Scalar, if `reduction` is ``'none'``, its shape is the same as `input`. Otherwise, a scalar value will be returned. Raises: TypeError: If input `input` or `target` is not Tensor. TypeError: If `weight` or `pos_weight` is a parameter. TypeError: If data type of `reduction` is not string. ValueError: If `weight` or `pos_weight` can not be broadcast to a tensor with shape of `input`. ValueError: If `reduction` is not one of ``'none'``, ``'mean'``, ``'sum'``. Supported Platforms: ``Ascend`` Examples: >>> import mindspore as ms >>> from mindspore import mint >>> import numpy as np >>> input = ms.Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32)) >>> target = ms.Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float32)) >>> loss = mint.nn.BCEWithLogitsLoss() >>> output = loss(input, target) >>> print(output) 0.3463612 """ def __init__(self, weight=None, reduction='mean', pos_weight=None): super(BCEWithLogitsLoss, self).__init__() self.bce_with_logits = ops.auto_generate.BCEWithLogitsLoss(reduction) self.weight = weight self.pos_weight = pos_weight def construct(self, input, target): out = self.bce_with_logits(input, target, self.weight, self.pos_weight) return out
[docs]class SELU(Cell): r""" Activation function SELU (Scaled exponential Linear Unit). Refer to :func:`mindspore.mint.nn.functional.selu` for more details. SELU Activation Function Graph: .. image:: ../images/SeLU.png :align: center Supported Platforms: ``Ascend`` Examples: >>> import mindspore >>> from mindspore import Tensor, mint >>> import numpy as np >>> input = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> selu = mint.nn.SELU() >>> output = selu(input) >>> print(output) [[-1.1113307 4.202804 -1.7575096] [ 2.101402 -1.7462534 9.456309 ]] """ def __init__(self): """Initialize SELU""" super(SELU, self).__init__() def construct(self, input): return F.selu(input)
[docs]class GELU(Cell): r""" Activation function GELU (Gaussian Error Linear Unit). Refer to :func:`mindspore.mint.nn.functional.gelu` for more details. GELU Activation Function Graph: .. image:: ../images/GELU.png :align: center Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> from mindspore import Tensor, mint >>> import numpy as np >>> input = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> gelu = mint.nn.GELU() >>> output = gelu(input) >>> print(output) [[-1.5880802e-01 3.9999299e+00 -3.1077917e-21] [ 1.9545976e+00 -2.2918017e-07 9.0000000e+00]] >>> gelu = mint.nn.GELU(approximate=False) >>> # CPU not support "approximate=False", using "approximate=True" instead >>> output = gelu(input) >>> print(output) [[-1.5865526e-01 3.9998732e+00 -0.0000000e+00] [ 1.9544997e+00 -1.4901161e-06 9.0000000e+00]] """ def __init__(self): """Initialize GELU""" super(GELU, self).__init__() def construct(self, input): return F.gelu(input)
[docs]class Mish(Cell): r""" Computes MISH (A Self Regularized Non-Monotonic Neural Activation Function) of input tensors element-wise. Refer to :func:`mindspore.mint.nn.functional.mish` for more details. Mish Activation Function Graph: .. image:: ../images/Mish.png :align: center Supported Platforms: ``Ascend`` Examples: >>> import mindspore >>> from mindspore import Tensor, mint >>> import numpy as np >>> x = Tensor(np.array([[-1.1, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> mish = mint.nn.Mish() >>> output = mish(x) >>> print(output) [[-3.0764845e-01 3.9974124e+00 -2.6832507e-03] [ 1.9439589e+00 -3.3576239e-02 8.9999990e+00]] """ def __init__(self): """Initialize Mish.""" super(Mish, self).__init__() def construct(self, input): return F.mish(input)
[docs]class MSELoss(Cell): r""" Calculates the mean squared error between the predicted value and the label value. For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`N`, the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y` is given as: .. math:: \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad \text{with} \quad l_n = (x_n - y_n)^2. where :math:`N` is the batch size. If `reduction` is not ``'none'``, then: .. math:: \ell(x, y) = \begin{cases} \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{'sum'.} \end{cases} Args: reduction (str, optional): Apply specific reduction method to the output: ``'none'`` , ``'mean'`` , ``'sum'`` . Default: ``'mean'`` . - ``'none'``: no reduction will be applied. - ``'mean'``: compute and return the mean of elements in the output. - ``'sum'``: the output elements will be summed. Inputs: - **logits** (Tensor) - The predicted value of the input. Tensor of any dimension. The data type needs to be consistent with the `labels`. It should also be broadcastable with the `labels`. - **labels** (Tensor) - The input label. Tensor of any dimension. The data type needs to be consistent with the `logits`. It should also be broadcastable with the `logits`. Outputs: - Tensor. If `reduction` is ``'mean'`` or ``'sum'``, the shape of output is `Tensor Scalar`. - If reduction is ``'none'``, the shape of output is the broadcasted shape of `logits` and `labels` . Raises: ValueError: If `reduction` is not one of ``'mean'``, ``'sum'`` or ``'none'``. ValueError: If `logits` and `labels` are not broadcastable. TypeError: If `logits` and `labels` are in different data type. Supported Platforms: ``Ascend`` Examples: >>> import mindspore >>> from mindspore import Tensor, nn >>> import numpy as np >>> # Case 1: logits.shape = labels.shape = (3,) >>> loss = nn.MSELoss() >>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> labels = Tensor(np.array([1, 1, 1]), mindspore.float32) >>> output = loss(logits, labels) >>> print(output) 1.6666667 >>> # Case 2: logits.shape = (3,), labels.shape = (2, 3) >>> loss = nn.MSELoss(reduction='none') >>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> labels = Tensor(np.array([[1, 1, 1], [1, 2, 2]]), mindspore.float32) >>> output = loss(logits, labels) >>> print(output) [[0. 1. 4.] [0. 0. 1.]] """ def __init__(self, reduction='mean'): super(MSELoss, self).__init__() self.mse_loss = mse_loss_ext self.reduction = reduction def construct(self, input, target): out = self.mse_loss(input, target, self.reduction) return out
__all__ = [ # 1 'BCEWithLogitsLoss', # 2 # 3 'Identity', # 4 # 5 # 6 'Fold', # 7 'Unfold', # 8 'Softmax', # 9 'Upsample', # 10 # 11 'ReLU', # 12 # 13 # 14 # 15 # 16 'LogSoftmax', # 17 # 18 'PReLU', # 19 # 20 # 21 # 22 # 23 # 24 # 25 # 26 # 27 # 28 # 29 # 30 # 31 # 32 # 33 # 34 # 35 # 36 # 37 # 38 'Linear', # 39 # 40 'GroupNorm', # 41 # 42 # 43 # 44 # 45 # 46 'SiLU', # 47 # 48 # 49 # 50 # 51 # 52 # 53 # 54 # 55 # 56 # 57 # 58 # 59 # 60 # 61 # 62 # 63 # 64 # 65 # 66 # 67 # 68 # 69 # 70 # 71 # 72 # 73 # 74 # 75 # 76 # 77 # 78 # 79 # 80 # 81 # 82 # 83 # 84 # 85 # 86 # 87 # 88 # 89 # 90 # 91 # 92 # 93 # 94 # 95 # 96 'AdaptiveAvgPool1d', # 97 'AdaptiveAvgPool2d', # 98 # 99 'AvgPool2d', # 100 'SELU', # 159 'GELU', # 220 'Hardshrink', # 221 'Hardsigmoid', # 222 'Hardswish', # 238 'L1Loss', # 267 'Mish', # 258 'MSELoss', # 259 # 556 'LogSigmoid', # 674 'BatchNorm1d', # 675 'BatchNorm2d', # 676 'BatchNorm3d', ]