# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Neural Networks Cells.
Predefined building blocks or computing units to construct neural networks.
"""
from __future__ import absolute_import
import mindspore.ops as ops
from mindspore.mint.nn import functional as F
from mindspore.nn.cell import Cell
from mindspore.nn import EmbeddingExt as Embedding, MaxPool2dExt as MaxPool2d, LayerNormExt as LayerNorm, Linear
# 1
# 2
# 3
from mindspore.nn.layer.basic import Identity
# 4
# 5
# 6
from mindspore.nn.layer.basic import UnfoldExt as Unfold
# 7
from mindspore.nn.layer.basic import Fold
# 8
from mindspore.nn.layer.activation import SoftmaxExt as Softmax
# 9
from mindspore.nn.layer.basic import UpsampleExt as Upsample
# 10
# 11
from mindspore.nn.layer import ReLU
# 12
# 13
# 14
from mindspore.nn.layer.basic import DropoutExt as Dropout
# 15
# 16
from mindspore.nn.layer import LogSoftmaxExt as LogSoftmax
# 17
# 18
from mindspore.nn.layer import PReLUExt as PReLU
# 19
# 20
# 21
# 22
# 23
# 24
# 25
# 26
# 27
# 28
# 29
# 30
# 31
# 32
# 33
# 34
# 35
# 36
# 37
# 38
# 39
# 40
from mindspore.mint.nn.layer.normalization import GroupNorm
from mindspore.mint.nn.layer.normalization import LayerNorm
# 41
# 42
# 43
# 44
# 45
# 46
from mindspore.mint.nn.layer.activation import SiLU, LogSigmoid
# 47
# 48
# 49
# 50
# 51
# 52
# 53
# 54
# 55
# 56
# 57
# 58
# 59
# 60
# 61
# 62
# 63
# 64
# 65
# 66
# 67
# 68
# 69
# 70
# 71
# 72
# 73
# 74
# 75
# 76
# 77
# 78
# 79
# 80
# 81
# 82
# 83
# 84
# 85
# 86
# 87
# 88
# 89
# 90
# 91
# 92
# 93
# 94
# 95
# 96
# 97
# 98
# 99
from mindspore.nn.layer import AvgPool2dExt as AvgPool2d
# 100
from mindspore.nn.layer import SoftShrink as Softshrink
# 159
# 220
from mindspore.nn.layer import HShrink as Hardshrink
# 221
from mindspore.nn.layer import HSigmoid as Hardsigmoid
# 222
from mindspore.nn.layer import HSwish as Hardswish
# 238
from mindspore.nn.loss import L1LossExt as L1Loss
# 257
# 258
from mindspore.ops.function.nn_func import mse_loss_ext
# 674
from mindspore.mint.nn.layer.normalization import BatchNorm1d
# 675
from mindspore.mint.nn.layer.normalization import BatchNorm2d
# 676
from mindspore.mint.nn.layer.normalization import BatchNorm3d
from mindspore.mint.nn.layer.pooling import AdaptiveAvgPool1d
from mindspore.mint.nn.layer.pooling import AdaptiveAvgPool2d
[docs]class BCEWithLogitsLoss(Cell):
r"""
Adds sigmoid activation function to `input` as logits, and uses this logits to compute binary cross entropy
between the logits and the target.
Sets input `input` as :math:`X`, input `target` as :math:`Y`, output as :math:`L`. Then,
.. math::
p_{ij} = sigmoid(X_{ij}) = \frac{1}{1 + e^{-X_{ij}}}
.. math::
L_{ij} = -[Y_{ij} \cdot \log(p_{ij}) + (1 - Y_{ij}) \cdot \log(1 - p_{ij})]
Then,
.. math::
\ell(x, y) = \begin{cases}
L, & \text{if reduction} = \text{'none';}\\
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
Args:
weight (Tensor, optional): A rescaling weight applied to the loss of each batch element.
If not None, it can be broadcast to a tensor with shape of `target`, data type must be float16, float32 or
bfloat16(only Atlas A2 series products are supported). Default: ``None`` .
reduction (str, optional): Apply specific reduction method to the output: ``'none'`` , ``'mean'`` ,
``'sum'`` . Default: ``'mean'`` .
- ``'none'``: no reduction will be applied.
- ``'mean'``: compute and return the weighted mean of elements in the output.
- ``'sum'``: the output elements will be summed.
pos_weight (Tensor, optional): A weight of positive examples. Must be a vector with length equal to the
number of classes. If not None, it must be broadcast to a tensor with shape of `input`, data type
must be float16, float32 or bfloat16(only Atlas A2 series products are supported). Default: ``None`` .
Inputs:
- **input** (Tensor) - Input `input` with shape :math:`(N, *)` where :math:`*` means, any number
of additional dimensions. The data type must be float16, float32 or bfloat16(only Atlas A2 series products
are supported).
- **target** (Tensor) - Ground truth label with shape :math:`(N, *)` where :math:`*` means, any number
of additional dimensions. The same shape and data type as `input`.
Outputs:
Tensor or Scalar, if `reduction` is ``'none'``, its shape is the same as `input`.
Otherwise, a scalar value will be returned.
Raises:
TypeError: If input `input` or `target` is not Tensor.
TypeError: If `weight` or `pos_weight` is a parameter.
TypeError: If data type of `reduction` is not string.
ValueError: If `weight` or `pos_weight` can not be broadcast to a tensor with shape of `input`.
ValueError: If `reduction` is not one of ``'none'``, ``'mean'``, ``'sum'``.
Supported Platforms:
``Ascend``
Examples:
>>> import mindspore as ms
>>> from mindspore import mint
>>> import numpy as np
>>> input = ms.Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32))
>>> target = ms.Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float32))
>>> loss = mint.nn.BCEWithLogitsLoss()
>>> output = loss(input, target)
>>> print(output)
0.3463612
"""
def __init__(self, weight=None, reduction='mean', pos_weight=None):
super(BCEWithLogitsLoss, self).__init__()
self.bce_with_logits = ops.auto_generate.BCEWithLogitsLoss(reduction)
self.weight = weight
self.pos_weight = pos_weight
def construct(self, input, target):
out = self.bce_with_logits(input, target, self.weight, self.pos_weight)
return out
[docs]class SELU(Cell):
r"""
Activation function SELU (Scaled exponential Linear Unit).
Refer to :func:`mindspore.mint.nn.functional.selu` for more details.
SELU Activation Function Graph:
.. image:: ../images/SeLU.png
:align: center
Supported Platforms:
``Ascend``
Examples:
>>> import mindspore
>>> from mindspore import Tensor, mint
>>> import numpy as np
>>> input = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> selu = mint.nn.SELU()
>>> output = selu(input)
>>> print(output)
[[-1.1113307 4.202804 -1.7575096]
[ 2.101402 -1.7462534 9.456309 ]]
"""
def __init__(self):
"""Initialize SELU"""
super(SELU, self).__init__()
def construct(self, input):
return F.selu(input)
[docs]class GELU(Cell):
r"""
Activation function GELU (Gaussian Error Linear Unit).
Refer to :func:`mindspore.mint.nn.functional.gelu` for more details.
GELU Activation Function Graph:
.. image:: ../images/GELU.png
:align: center
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore
>>> from mindspore import Tensor, mint
>>> import numpy as np
>>> input = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> gelu = mint.nn.GELU()
>>> output = gelu(input)
>>> print(output)
[[-1.5880802e-01 3.9999299e+00 -3.1077917e-21]
[ 1.9545976e+00 -2.2918017e-07 9.0000000e+00]]
>>> gelu = mint.nn.GELU(approximate=False)
>>> # CPU not support "approximate=False", using "approximate=True" instead
>>> output = gelu(input)
>>> print(output)
[[-1.5865526e-01 3.9998732e+00 -0.0000000e+00]
[ 1.9544997e+00 -1.4901161e-06 9.0000000e+00]]
"""
def __init__(self):
"""Initialize GELU"""
super(GELU, self).__init__()
def construct(self, input):
return F.gelu(input)
[docs]class Mish(Cell):
r"""
Computes MISH (A Self Regularized Non-Monotonic Neural Activation Function)
of input tensors element-wise.
Refer to :func:`mindspore.mint.nn.functional.mish` for more details.
Mish Activation Function Graph:
.. image:: ../images/Mish.png
:align: center
Supported Platforms:
``Ascend``
Examples:
>>> import mindspore
>>> from mindspore import Tensor, mint
>>> import numpy as np
>>> x = Tensor(np.array([[-1.1, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> mish = mint.nn.Mish()
>>> output = mish(x)
>>> print(output)
[[-3.0764845e-01 3.9974124e+00 -2.6832507e-03]
[ 1.9439589e+00 -3.3576239e-02 8.9999990e+00]]
"""
def __init__(self):
"""Initialize Mish."""
super(Mish, self).__init__()
def construct(self, input):
return F.mish(input)
[docs]class MSELoss(Cell):
r"""
Calculates the mean squared error between the predicted value and the label value.
For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`N`,
the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y` is given as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad \text{with} \quad l_n = (x_n - y_n)^2.
where :math:`N` is the batch size. If `reduction` is not ``'none'``, then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
Args:
reduction (str, optional): Apply specific reduction method to the output: ``'none'`` , ``'mean'`` ,
``'sum'`` . Default: ``'mean'`` .
- ``'none'``: no reduction will be applied.
- ``'mean'``: compute and return the mean of elements in the output.
- ``'sum'``: the output elements will be summed.
Inputs:
- **logits** (Tensor) - The predicted value of the input. Tensor of any dimension.
The data type needs to be consistent with the `labels`. It should also be broadcastable with the `labels`.
- **labels** (Tensor) - The input label. Tensor of any dimension.
The data type needs to be consistent with the `logits`. It should also be broadcastable with the `logits`.
Outputs:
- Tensor. If `reduction` is ``'mean'`` or ``'sum'``, the shape of output is `Tensor Scalar`.
- If reduction is ``'none'``, the shape of output is the broadcasted shape of `logits` and `labels` .
Raises:
ValueError: If `reduction` is not one of ``'mean'``, ``'sum'`` or ``'none'``.
ValueError: If `logits` and `labels` are not broadcastable.
TypeError: If `logits` and `labels` are in different data type.
Supported Platforms:
``Ascend``
Examples:
>>> import mindspore
>>> from mindspore import Tensor, nn
>>> import numpy as np
>>> # Case 1: logits.shape = labels.shape = (3,)
>>> loss = nn.MSELoss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([1, 1, 1]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
1.6666667
>>> # Case 2: logits.shape = (3,), labels.shape = (2, 3)
>>> loss = nn.MSELoss(reduction='none')
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([[1, 1, 1], [1, 2, 2]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
[[0. 1. 4.]
[0. 0. 1.]]
"""
def __init__(self, reduction='mean'):
super(MSELoss, self).__init__()
self.mse_loss = mse_loss_ext
self.reduction = reduction
def construct(self, input, target):
out = self.mse_loss(input, target, self.reduction)
return out
__all__ = [
# 1
'BCEWithLogitsLoss',
# 2
# 3
'Identity',
# 4
# 5
# 6
'Fold',
# 7
'Unfold',
# 8
'Softmax',
# 9
'Upsample',
# 10
# 11
'ReLU',
# 12
# 13
# 14
# 15
# 16
'LogSoftmax',
# 17
# 18
'PReLU',
# 19
# 20
# 21
# 22
# 23
# 24
# 25
# 26
# 27
# 28
# 29
# 30
# 31
# 32
# 33
# 34
# 35
# 36
# 37
# 38
'Linear',
# 39
# 40
'GroupNorm',
# 41
# 42
# 43
# 44
# 45
# 46
'SiLU',
# 47
# 48
# 49
# 50
# 51
# 52
# 53
# 54
# 55
# 56
# 57
# 58
# 59
# 60
# 61
# 62
# 63
# 64
# 65
# 66
# 67
# 68
# 69
# 70
# 71
# 72
# 73
# 74
# 75
# 76
# 77
# 78
# 79
# 80
# 81
# 82
# 83
# 84
# 85
# 86
# 87
# 88
# 89
# 90
# 91
# 92
# 93
# 94
# 95
# 96
'AdaptiveAvgPool1d',
# 97
'AdaptiveAvgPool2d',
# 98
# 99
'AvgPool2d',
# 100
'SELU',
# 159
'GELU',
# 220
'Hardshrink',
# 221
'Hardsigmoid',
# 222
'Hardswish',
# 238
'L1Loss',
# 267
'Mish',
# 258
'MSELoss',
# 259
# 556
'LogSigmoid',
# 674
'BatchNorm1d',
# 675
'BatchNorm2d',
# 676
'BatchNorm3d',
]