Source code for mindspore.common.initializer

# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Initializer for cell parameters."""

from __future__ import absolute_import

import numbers
import math

from functools import reduce
import numpy as np
from mindspore.common.seed import get_seed, _get_graph_seed
from mindspore.common import dtype as mstype
from mindspore.common.tensor import Tensor
from mindspore._c_expression import _random_normal, _random_uniform, _truncated_normal

_INITIALIZER_ALIAS = dict()


[docs]class Initializer: """ The abstract base class of the initializer. Note: Initializers are intended to be used for delayed initialization in parallel mode rather than Tensor initialization. If you have to use Initializers to create a Tensor, :func:`mindspore.Tensor.init_data` should be followed in most of the cases. For more information, please refer to `mindspore.Tensor.init_data <https://www.mindspore.cn/docs/en/r2.4.10/api_python/mindspore/Tensor/mindspore.Tensor.init_data.html# mindspore-tensor-init-data>`_ . Args: kwargs (dict): Keyword arguments for Initializer. """ def __init__(self, **kwargs): self._kwargs = kwargs self._seed = None @property def seed(self): if self._seed is None: seed, seed2 = _get_graph_seed(get_seed(), "init") else: seed, seed2 = self._seed + 1, 0 return seed, seed2 @seed.setter def seed(self, value): self._seed = value def _initialize(self, *kwargs): raise NotImplementedError('Must be overridden!') def __call__(self, arr): return self._initialize(arr)
def _register(*aliases): """Return the alias register.""" def alias_reg(cls): name = cls.__name__ name = name.lower() if name not in _INITIALIZER_ALIAS: _INITIALIZER_ALIAS[name] = cls for alias in aliases: if alias not in _INITIALIZER_ALIAS: _INITIALIZER_ALIAS[alias] = cls return cls return alias_reg def _assignment(arr, num): """Assign the value of `num` to `arr`.""" if arr.shape == (): arr = arr.reshape(1) arr[:] = num arr = arr.reshape(()) else: if isinstance(num, np.ndarray): arr[:] = num[:] else: arr[:] = num return arr def _numpy_seed(): # This will produce same value after call numpy.random.seed with same seed. return np.random.randint(low=1, high=(1 << 63), dtype=np.int64) def _init_random_normal_inplace(mean, sigma, arr): if sigma < 0: raise ValueError("sigma < 0") _random_normal(_numpy_seed(), arr, mean, sigma) def _init_random_normal(mean, sigma, shape): if sigma < 0: raise ValueError("sigma < 0") data = np.ndarray(shape=shape, dtype=np.float32) _random_normal(_numpy_seed(), data, mean, sigma) return data def _init_random_uniform_inplace(a, b, arr): _random_uniform(_numpy_seed(), arr, a, b) def _init_random_uniform(a, b, shape): data = np.ndarray(shape=shape, dtype=np.float32) _random_uniform(_numpy_seed(), data, a, b) return data def _init_truncated_normal_inplace(a, b, mean, sigma, arr): if sigma < 0: raise ValueError("sigma < 0") _truncated_normal(_numpy_seed(), arr, a, b, mean, sigma) def _init_truncated_normal(a, b, mean, sigma, shape): if sigma < 0: raise ValueError("sigma < 0") data = np.ndarray(shape=shape, dtype=np.float32) _truncated_normal(_numpy_seed(), data, a, b, mean, sigma) return data
[docs]@_register('zeros') class Zero(Initializer): """ Generates an array with constant value of zero in order to initialize a tensor. Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, Zero >>> from mindspore import Parameter >>> w1 = Parameter(initializer(Zero(), [1, 2, 3], mindspore.float32)) >>> w2 = Parameter(initializer('zeros', [1, 2, 3], mindspore.float32)) """ def _initialize(self, arr): arr.fill(0)
[docs]@_register('ones') class One(Initializer): """ Generates an array with constant value of one in order to initialize a tensor. Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, One >>> from mindspore import Parameter >>> w1 = Parameter(initializer(One(), [1, 2, 3], mindspore.float32)) >>> w2 = Parameter(initializer('ones', [1, 2, 3], mindspore.float32)) """ def _initialize(self, arr): arr.fill(1)
def _calculate_fan_in_and_fan_out(shape): """ calculate fan_in and fan_out Args: shape (tuple): input shape. Returns: Tuple, a tuple with two elements, the first element is `n_in` and the second element is `n_out`. """ dimensions = len(shape) if dimensions < 2: raise ValueError("'fan_in' and 'fan_out' can not be computed for tensor with fewer than" " 2 dimensions, but got dimensions {}.".format(dimensions)) if dimensions == 2: # Linear fan_in = shape[1] fan_out = shape[0] else: num_input_fmaps = shape[1] num_output_fmaps = shape[0] receptive_field_size = 1 for i in range(2, dimensions): receptive_field_size *= shape[i] fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out def _calculate_correct_fan(shape, mode): """ Calculate fan. Args: shape (tuple): input shape. mode (str): only support fan_in and fan_out. Returns: fan_in or fan_out. """ mode = mode.lower() valid_modes = ['fan_in', 'fan_out'] if mode not in valid_modes: raise ValueError("'mode' {} not supported, please use one of {}".format(mode, valid_modes)) fan_in, fan_out = _calculate_fan_in_and_fan_out(shape) return fan_in if mode == 'fan_in' else fan_out def _calculate_gain(nonlinearity, param=None): """ Calculate gain. Args: nonlinearity (str): nonlinearity function. param (str): used to calculate negative_slope. Returns: number. """ linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] if nonlinearity in linear_fns or nonlinearity == 'sigmoid': res = 1 elif nonlinearity == 'tanh': res = 5.0 / 3 elif nonlinearity == 'relu': res = math.sqrt(2.0) elif nonlinearity == 'leaky_relu': if param is None: negative_slope = 0.01 elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): # True/False are instances of int, hence check above negative_slope = param else: raise ValueError("For 'HeUniform', 'negative_slope' {} is not a valid number." "When 'nonlinearity' has been set to " "'leaky_relu', 'negative_slope' should be int or float type, but got " "{}.".format(param, type(param))) res = math.sqrt(2.0 / (1 + negative_slope ** 2)) else: raise ValueError("For 'HeUniform', the argument 'nonlinearity' should be one of " "['sigmoid', 'tanh', 'relu' or 'leaky_relu'], " "but got {}.".format(nonlinearity)) return res def _calculate_in_and_out(arr): """ Calculate n_in and n_out. Args: arr (Array): Input array. Returns: Tuple, a tuple with two elements, the first element is `n_in` and the second element is `n_out`. """ dim = len(arr.shape) if dim < 2: raise ValueError("If initialize data with xavier uniform, the dimension of data must be greater than 1, " "but got {}.".format(dim)) n_in = arr.shape[1] n_out = arr.shape[0] if dim > 2: counter = reduce(lambda x, y: x * y, arr.shape[2:]) n_in *= counter n_out *= counter return n_in, n_out
[docs]@_register('xavier_normal') class XavierNormal(Initializer): r""" Generates an array with values sampled from Xavier normal distribution :math:`{N}(0, \text{sigma}^2)` in order to initialize a tensor, where .. math:: sigma = gain * \sqrt{\frac{2}{n_{in} + n_{out}}} where :math:`gain` is an optional scaling factor, :math:`n_{in}` is the number of input units in the weight tensor, :math:`n_{out}` is the number of output units in the weight tensor. Args: gain (float): An optional scaling factor. Default: ``1`` . Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, XavierNormal >>> from mindspore import Parameter >>> w1 = Parameter(initializer(XavierNormal(), [1, 2, 3], mindspore.float32)) >>> w2 = Parameter(initializer('xavier_normal', [1, 2, 3], mindspore.float32)) """ def __init__(self, gain=1): super().__init__(gain=gain) self.gain = gain def _initialize(self, arr): fan_in, fan_out = _calculate_fan_in_and_fan_out(arr.shape) std = self.gain * math.sqrt(2.0 / float(fan_in + fan_out)) if isinstance(arr, np.ndarray) and arr.dtype == np.float32: _init_random_normal_inplace(0, std, arr) else: data = _init_random_normal(0, std, arr.shape) _assignment(arr, data)
[docs]@_register('xavier_uniform') class XavierUniform(Initializer): r""" Generates an array with values sampled from Xavier uniform distribution :math:`{U}(-\text{boundary}, \text{boundary})` in order to initialize a tensor, where .. math:: boundary = gain * \sqrt{\frac{6}{n_{in} + n_{out}}} where :math:`gain` is an optional scaling factor. :math:`n_{in}` is the number of input units in the weight tensor, :math:`n_{out}` is the number of output units in the weight tensor. For details of XavierUniform algorithm, please check `<http://proceedings.mlr.press/v9/glorot10a.html>`_. Args: gain (float): An optional scaling factor. Default: ``1`` . Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, XavierUniform >>> from mindspore import Parameter >>> w1 = Parameter(initializer(XavierUniform(), [1, 2, 3], mindspore.float32)) >>> w2 = Parameter(initializer('xavier_uniform', [1, 2, 3], mindspore.float32)) """ def __init__(self, gain=1): super(XavierUniform, self).__init__(gain=gain) self.gain = gain def _initialize(self, arr): n_in, n_out = _calculate_fan_in_and_fan_out(arr.shape) boundary = self.gain * math.sqrt(6.0 / (n_in + n_out)) if isinstance(arr, np.ndarray) and arr.dtype == np.float32: _init_random_uniform_inplace(-boundary, boundary, arr) else: data = _init_random_uniform(-boundary, boundary, arr.shape) _assignment(arr, data)
[docs]@_register('he_uniform') class HeUniform(Initializer): r""" Generates an array with values sampled from HeKaiming Uniform distribution :math:`{U}(-\text{boundary}, \text{boundary})` in order to initialize a tensor, where .. math:: boundary = \text{gain} \times \sqrt{\frac{3}{fan\_mode}} where :math:`gain` is an optional scaling factor. If :math:`fan\_mode` is ``'fan_in'``, it is the number of input units of the weight tensor. If :math:`fan\_mode` is ``'fan_out'``, it is the number of output units of the weight tensor. For details of HeUniform algorithm, please check `<https://arxiv.org/abs/1502.01852>`_. Args: negative_slope (int, float, bool): The negative slope of the rectifier used after this layer (only used when `nonlinearity` is 'leaky_relu'). Default: ``0`` . mode (str): Either ``'fan_in'`` or ``'fan_out'`` . Choosing ``'fan_in'`` preserves the magnitude of the variance of the weights in the forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the backwards pass. Default: ``'fan_in'`` . nonlinearity (str): The non-linear function, recommended to use only with ``'relu'`` or ``'leaky_relu'`` . Default: ``'leaky_relu'`` . Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, HeUniform >>> from mindspore import Parameter >>> w1 = Parameter(initializer(HeUniform(), [1, 2, 3], mindspore.float32)) >>> w2 = Parameter(initializer('he_uniform', [1, 2, 3], mindspore.float32)) """ def __init__(self, negative_slope=0, mode='fan_in', nonlinearity='leaky_relu'): super(HeUniform, self).__init__(negative_slope=negative_slope, mode=mode, nonlinearity=nonlinearity) self.negative_slope = negative_slope self.mode = mode self.nonlinearity = nonlinearity def _initialize(self, arr): fan = _calculate_correct_fan(arr.shape, self.mode) gain = _calculate_gain(self.nonlinearity, self.negative_slope) std = gain / math.sqrt(fan) boundary = math.sqrt(3.0) * std if isinstance(arr, np.ndarray) and arr.dtype == np.float32: _init_random_uniform_inplace(-boundary, boundary, arr) else: data = _init_random_uniform(-boundary, boundary, arr.shape) _assignment(arr, data)
[docs]@_register('he_normal') class HeNormal(Initializer): r""" Generates an array with values sampled from HeKaiming Normal distribution :math:`{N}(0, \text{sigma}^2)` in order to initialize a tensor, where .. math:: sigma = \frac{gain} {\sqrt{fan\_mode}} where :math:`gain` is an optional scaling factor. :math:`fan\_mode` is the number of input or output units of the weight tensor, depending on the `mode` is 'fan_in' or 'fan_out'. For details of HeNormal algorithm, please check `<https://arxiv.org/abs/1502.01852>`_. Args: negative_slope (int, float): The negative slope of the rectifier used after this layer (only used when `nonlinearity` is 'leaky_relu'). Default: ``0`` . mode (str): Either ``'fan_in'`` or ``'fan_out'`` . Choosing ``'fan_in'`` preserves the magnitude of the variance of the weights in the forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the backwards pass. Default: ``'fan_in'`` . nonlinearity (str): The non-linear function, recommended to use only with ``'relu'`` or ``'leaky_relu'`` . Default: ``'leaky_relu'`` . Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, HeNormal >>> from mindspore import Parameter >>> w1 = Parameter(initializer(HeNormal(), [1, 2, 3], mindspore.float32)) >>> w2 = Parameter(initializer('he_normal', [1, 2, 3], mindspore.float32)) """ def __init__(self, negative_slope=0, mode='fan_in', nonlinearity='leaky_relu'): super(HeNormal, self).__init__(negative_slope=negative_slope, mode=mode, nonlinearity=nonlinearity) self.negative_slope = negative_slope self.mode = mode self.nonlinearity = nonlinearity def _initialize(self, arr): fan = _calculate_correct_fan(arr.shape, self.mode) gain = _calculate_gain(self.nonlinearity, self.negative_slope) std = gain / math.sqrt(fan) if isinstance(arr, np.ndarray) and arr.dtype == np.float32: _init_random_normal_inplace(0, std, arr) else: data = _init_random_normal(0, std, arr.shape) _assignment(arr, data)
[docs]class Constant(Initializer): """ Generates an array with constant value in order to initialize a tensor. Args: value (Union[int, numpy.ndarray]): The value to initialize. Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, Constant >>> from mindspore import Parameter >>> w1 = Parameter(initializer(Constant(3), [1, 2, 3], mindspore.float32)) """ def __init__(self, value): super(Constant, self).__init__(value=value) self.value = value def _initialize(self, arr): arr.fill(self.value)
[docs]@_register() class Identity(Initializer): """ Generates a 2 dimension identity matrix array in order to initialize a tensor. Raises: ValueError: If the dimension of input tensor is not equal to 2. Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, Identity >>> from mindspore import Parameter >>> w1 = initializer(Identity(), [2, 3], mindspore.float32) >>> w2 = initializer('identity', [2, 3], mindspore.float32) """ def _initialize(self, arr): if len(arr.shape) != 2: raise ValueError('For Identity initializer, the dimension of the initialized tensor should be 2, ' 'but got {}.'.format(len(arr.shape))) value = np.eye(arr.shape[0], arr.shape[1]) _assignment(arr, value)
[docs]@_register() class Sparse(Initializer): """ Generates a 2 dimension sparse matrix array in order to initialize a tensor. The non-zero positions will be filled with the value sampled from the normal distribution :math:`{N}(0, sigma)`. Args: sparsity (float): The fraction of elements being set to zero in each column. sigma (float): The standard deviation of the normal distribution. Default: ``0.01`` . Raises: ValueError: If the dimension of input tensor is not equal to 2. Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, Sparse >>> from mindspore import Parameter >>> w1 = Parameter(initializer(Sparse(sparsity=0.1, sigma=0.01), [5, 8], mindspore.float32)) """ def __init__(self, sparsity, sigma=0.01): super(Sparse, self).__init__() self.sparsity = sparsity self.sigma = sigma def _initialize(self, arr): if len(arr.shape) != 2: raise ValueError('For Sparse initializer, the dimension of the initialized tensor should be 2, ' 'but got {}.'.format(len(arr.shape))) rows, cols = arr.shape zero_num = int(np.ceil(self.sparsity * rows)) data = _init_random_normal(0, self.sigma, arr.shape) for col_idx in range(cols): row_idx = np.random.permutation(list(range(rows)))[: zero_num] data[row_idx, col_idx] = 0. _assignment(arr, data)
[docs]@_register() class Dirac(Initializer): """ Generates an array with the Dirac delta function in order to initialize a tensor. It's usually used in convolution layers, preserves as many identities of the inputs as possible. Args: groups (int): The number of groups in convolution layer. Each group applies the same initialization. Default: ``1`` . Raises: ValueError: If the dimension of the initialized tensor is not in [3, 4, 5]. ValueError: The first dimension of the initialized tensor cannot be divisible by group. Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, Dirac >>> from mindspore import Parameter >>> w1 = Parameter(initializer(Dirac(groups=2), [6, 4, 3, 3], mindspore.float32)) >>> w2 = Parameter(initializer("dirac", [6, 4, 3, 3], mindspore.float32)) """ def __init__(self, groups=1): super(Dirac, self).__init__() self.groups = groups def _initialize(self, arr): dimension = len(arr.shape) data = np.zeros(arr.shape) if dimension not in [3, 4, 5]: raise ValueError("For Dirac initializer, only support " "to initialize tensor with dimension of 3, 4 or 5, but got {}.".format(dimension)) shapes = arr.shape if shapes[0] % self.groups != 0: raise ValueError("For Dirac initializer, the first dimension of" "the initialized tensor must be divisible by groups, " "but got first dimension{}, groups{}.".format(shapes[0], self.groups)) out_channel_per_group = shapes[0] // self.groups min_dim = min(out_channel_per_group, shapes[1]) for group in range(self.groups): for dim in range(min_dim): if dimension == 3: data[group * out_channel_per_group + dim, dim, shapes[2] // 2] = 1 elif dimension == 4: data[group * out_channel_per_group + dim, dim, shapes[2] // 2, shapes[3] // 2] = 1 else: data[group * out_channel_per_group + dim, dim, shapes[2] // 2, shapes[3] // 2, shapes[4] // 2] = 1 _assignment(arr, data)
[docs]@_register() class Orthogonal(Initializer): r""" Generates a (semi) orthogonal matrix array in order to initialize a tensor. The dimension of input tensor must have at least 2 dimensions. If the dimension is greater than 2, the trailing dimensions will be flattened. Args: gain (float): An optional scaling factor. Default: ``1.0`` . Raises: ValueError: If the dimension of input tensor is less than 2. Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, Orthogonal >>> from mindspore import Parameter >>> w1 = Parameter(initializer(Orthogonal(gain=2.), [2, 3, 4], mindspore.float32)) >>> w2 = Parameter(initializer('orthogonal', [2, 3, 4], mindspore.float32)) """ def __init__(self, gain=1.): super(Orthogonal, self).__init__(gain=gain) self.gain = gain def _initialize(self, arr): if len(arr.shape) < 2: raise ValueError('For Orthogonal initializer, the dimension of the initialized tensor should' ' be no less than 2, but got {}.'.format(len(arr.shape))) rows = arr.shape[0] cols = np.prod(arr.shape) // rows data = _init_random_normal(0, 1, (rows, cols)) if rows < cols: data = data.T q, r = np.linalg.qr(data) d = np.diag(r) ph = np.sign(d) q *= ph if rows < cols: q = q.T q = q * self.gain _assignment(arr, q.reshape(arr.shape))
[docs]@_register() class VarianceScaling(Initializer): r""" Generates an random array with scaling in order to initialize a tensor. When `distribution` is 'truncated_normal' or 'untruncated_normal', the value will be sampled from truncated or untruncated normal distribution with a mean of 0 and a scaled standard deviation :math:`stddev = \sqrt{\frac{scale}{n}}`. :math:`n` will be the number of input units if `mode` is ``'fan_in'``, while :math:`n` will be the number of output units if `mode` is ``'fan_out'``. :math:`n` will be the average of ``'fan_in'`` and ``'fan_out'`` if `mode` is ``'fan_avg'``. When `distribution` is ``'uniform'``, the value will be sampled from a uniform distribution within the limit of :math:`[-\sqrt{\frac{3*scale}{n}}, \sqrt{\frac{3*scale}{n}}]`. Args: scale (float): The scaling factor. Default: ``1.0`` . mode (str): Should be ``'fan_in'`` , ``'fan_out'`` or ``'fan_avg'`` . Default: ``'fan_in'`` . distribution(str): The type of distribution chose to sample values. It should be ``'uniform'`` , ``'truncated_normal'`` or ``'untruncated_normal'`` . Default: ``'truncated_normal'`` . Raises: ValueError: If `scale` is not greater than 0. ValueError: If `mode` is not ``'fan_in'``, ``'fan_out'`` or ``'fan_avg'``. ValueError: If `distribution` is not ``'uniform'``, ``'truncated_normal'`` or ``'untruncated_normal'``. Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, VarianceScaling >>> from mindspore import Parameter >>> w1 = Parameter(initializer(VarianceScaling(scale=1.0, mode='fan_out', ... distribution='untruncated_normal'), [2, 3], mindspore.float32)) >>> w2 = Parameter(initializer('varianceScaling', [2, 3], mindspore.float32)) """ def __init__(self, scale=1.0, mode='fan_in', distribution='truncated_normal'): super(VarianceScaling, self).__init__(scale=scale, mode=mode, distribution=distribution) if scale <= 0.: raise ValueError("For VarianceScaling initializer, " "the argument 'scale' must be greater than 0, but got {}.".format(scale)) if mode not in ['fan_in', 'fan_out', 'fan_avg']: raise ValueError("For VarianceScaling initializer, the argument 'mode' must be fan_in, " "fan_out or fan_avg, but got {}.".format(mode)) if distribution not in ['uniform', 'truncated_normal', 'untruncated_normal']: raise ValueError("For VarianceScaling initializer, the argument 'distribution' must be uniform, " "truncated_norm or untruncated_norm, but got {}.".format(distribution)) self.scale = scale self.mode = mode self.distribution = distribution def _initialize(self, arr): scale = self.scale fan_in, fan_out = _calculate_fan_in_and_fan_out(arr.shape) if self.mode == 'fan_in': scale /= max(1., fan_in) elif self.mode == 'fan_out': scale /= max(1., fan_out) else: scale /= max(1., (fan_in + fan_out) / 2.) if self.distribution == 'truncated_norm': stddev = np.sqrt(scale) / 0.87962566103423978 data = _init_truncated_normal(-2, 2, 0, stddev, arr.shape) elif self.distribution == 'untruncated_normal': stddev = np.sqrt(scale) data = _init_random_normal(0, stddev, arr.shape) else: limit = np.sqrt(3.0 * scale) data = _init_random_uniform(-limit, limit, arr.shape) _assignment(arr, data)
[docs]@_register() class Uniform(Initializer): r""" Generates an array with values sampled from Uniform distribution :math:`{U}(-\text{scale}, \text{scale})` in order to initialize a tensor. Args: scale (float): The bound of the Uniform distribution. Default: ``0.07`` . Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, Uniform >>> from mindspore import Parameter >>> w1 = Parameter(initializer(Uniform(), [1, 2, 3], mindspore.float32)) >>> w2 = Parameter(initializer('uniform', [1, 2, 3], mindspore.float32)) """ def __init__(self, scale=0.07): super(Uniform, self).__init__(scale=scale) self.scale = scale def _initialize(self, arr): if isinstance(arr, np.ndarray) and arr.dtype == np.float32: _init_random_uniform_inplace(-self.scale, self.scale, arr) else: tmp = _init_random_uniform(-self.scale, self.scale, arr.shape) _assignment(arr, tmp)
[docs]@_register() class Normal(Initializer): r""" Generates an array with values sampled from Normal distribution :math:`{N}(\text{sigma}, \text{mean})` in order to initialize a tensor. .. math:: f(x) = \frac{1} {\sqrt{2*π} * sigma}exp(-\frac{(x - mean)^2} {2*{sigma}^2}) Args: sigma (float): The standard deviation of Normal distribution. Default: ``0.01`` . mean (float): The mean of Normal distribution. Default: ``0.0`` . Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, Normal >>> from mindspore import Parameter >>> w1 = Parameter(initializer(Normal(), [1, 2, 3], mindspore.float32)) >>> w2 = Parameter(initializer('normal', [1, 2, 3], mindspore.float32)) """ def __init__(self, sigma=0.01, mean=0.0): super(Normal, self).__init__(sigma=sigma, mean=mean) self.sigma = sigma self.mean = mean def _initialize(self, arr): if isinstance(arr, np.ndarray) and arr.dtype == np.float32: _init_random_normal_inplace(self.mean, self.sigma, arr) else: data = _init_random_normal(self.mean, self.sigma, arr.shape) _assignment(arr, data)
[docs]@_register() class TruncatedNormal(Initializer): r""" Generates an array with values sampled from Truncated Normal distribution in order to initialize a tensor. Args: sigma (float): The standard deviation of Truncated Normal distribution. Default: ``0.01`` . mean (float): The mean of Truncated Normal distribution. Default: ``0.0`` . a (float): The lower bound of the truncated interval. Default: ``-2.0`` . b (float): The upper bound of the truncated interval. Default: ``2.0`` . Examples: >>> import mindspore >>> from mindspore.common.initializer import initializer, TruncatedNormal >>> from mindspore import Parameter >>> w1 = Parameter(initializer(TruncatedNormal(), [1, 2, 3], mindspore.float32)) >>> w2 = Parameter(initializer('truncatedNormal', [1, 2, 3], mindspore.float32)) """ def __init__(self, sigma=0.01, mean=0.0, a=-2.0, b=2.0): super(TruncatedNormal, self).__init__(sigma=sigma, mean=mean, a=a, b=b) self.sigma = sigma self.mean = mean self.a = a self.b = b def _initialize(self, arr): if isinstance(arr, np.ndarray) and arr.dtype == np.float32: _init_truncated_normal_inplace(self.a, self.b, self.mean, self.sigma, arr) else: tmp = _init_truncated_normal(self.a, self.b, self.mean, self.sigma, arr.shape) _assignment(arr, tmp)
[docs]def initializer(init, shape=None, dtype=mstype.float32): """ Create and initialize a tensor. Args: init (Union[Tensor, str, Initializer, numbers.Number]): Initialize value. - `str`: The `init` should be the alias of the class inheriting from `Initializer` and the corresponding class will be called in practice. The value of `init` can be ``"normal"``, ``"ones"`` or ``"zeros"``, etc. - `Initializer`: The `init` should be the class inheriting from `Initializer` to initialize tensor. - `numbers.Number`: The `Constant` will be called to initialize tensor. - `Tensor`: The tensor will be called to initialize tensor. shape (Union[tuple, list, int]): The shape of the initialized tensor. Default: ``None`` . dtype (:class:`mindspore.dtype`): The type of data in initialized tensor. Default: ``mstype.float32`` . Returns: Tensor, return is Tensor object. Raises: TypeError: The type of the argument 'init' is not correct. ValueError: The shape of the tensor which is passed through 'init' is not the same as that passed by 'shape'. Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> from mindspore.common.initializer import initializer, One >>> from mindspore import Parameter >>> data = Tensor(np.zeros([1, 2, 3]), mindspore.float32) >>> w1 = Parameter(initializer(data, [1, 2, 3], mindspore.float32)) >>> w2 = Parameter(initializer('ones', [1, 2, 3], mindspore.float32)) >>> w3 = Parameter(initializer(One(), [1, 2, 3], mindspore.float32)) >>> w4 = Parameter(initializer(0, [1, 2, 3], mindspore.float32)) """ if not isinstance(init, (Tensor, numbers.Number, str, Initializer)): raise TypeError("For 'initializer', the type of the 'init' argument should be 'Tensor', 'number', 'string' " "or 'initializer', but got {}.".format(type(init))) if isinstance(init, Tensor): init_shape = init.shape shape = shape if isinstance(shape, (tuple, list)) else [shape] if shape is not None and init_shape != tuple(shape): raise ValueError("For 'initializer', the shape of the 'init' argument should be same as " "the argument 'shape', but got the " "'init' shape {} and the 'shape' {}.".format(list(init.shape), shape)) return init if isinstance(shape, list): shape = tuple(shape) elif isinstance(shape, numbers.Number): shape = (shape,) for value in shape if shape is not None else (): if not isinstance(value, int) or value <= 0: raise ValueError(f"For 'initializer', the argument 'shape' is invalid, the value of 'shape' " f"must be positive integer, " f"but got {shape}") if isinstance(init, str): class_name = _INITIALIZER_ALIAS.get(init.lower()) if class_name is None: raise ValueError(f"For 'initializer', the class corresponding to '{init}' was not found.") init = class_name() elif isinstance(init, numbers.Number): init = Constant(init) shape = shape if shape is not None else init.shape init_obj = Tensor(dtype=dtype, shape=shape, init=init) return init_obj
__all__ = [ 'Initializer', 'initializer', 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform', 'HeNormal', 'XavierUniform', 'XavierNormal', 'One', 'Zero', 'Constant', 'Identity', 'Sparse', 'Dirac', 'Orthogonal', 'VarianceScaling']