Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

PR

Just a small problem.

I can fix it online!

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.train.ConfusionMatrix

View Source On Gitee
class mindspore.train.ConfusionMatrix(num_classes, normalize='no_norm', threshold=0.5)[source]

Computes the confusion matrix, which is commonly used to evaluate the performance of classification models, including binary classification and multiple classification.

If you only need confusion matrix, use this class. If you want to calculate other metrics, such as 'PPV', 'TPR', 'TNR', etc., use class mindspore.train.ConfusionMatrixMetric .

Parameters
  • num_classes (int) – Number of classes in the dataset.

  • normalize (str) –

    Normalization mode for confusion matrix. Default: "no_norm" . Choose from:

    • "no_norm" : No Normalization is used. Default: None.

    • "target" : Normalization based on target value.

    • "prediction" : Normalization based on predicted value.

    • "all" : Normalization over the whole matrix.

  • threshold (float) – The threshold used to compare with the input tensor. Default: 0.5 .

Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore.train import ConfusionMatrix
>>>
>>> x = Tensor(np.array([1, 0, 1, 0]))
>>> y = Tensor(np.array([1, 0, 0, 1]))
>>> metric = ConfusionMatrix(num_classes=2, normalize='no_norm', threshold=0.5)
>>> metric.clear()
>>> metric.update(x, y)
>>> output = metric.eval()
>>> print(output)
[[1. 1.]
 [1. 1.]]
clear()[source]

Clears the internal evaluation result.

eval()[source]

Computes confusion matrix.

Returns

numpy.ndarray, the computed result.

update(*inputs)[source]

Update state with y_pred and y.

Parameters

inputs (tuple) – Input y_pred and y. y_pred and y are a Tensor, list or numpy.ndarray. y_pred is the predicted value, y is the true value. The shape of y_pred is (N,C,...) or (N,...). The shape of y is (N,...).

Raises
  • ValueError – If the number of inputs is not 2.

  • ValueError – If the dim of y_pred and y are not equal.