Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

PR

Just a small problem.

I can fix it online!

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.logsumexp

View Source On Gitee
mindspore.ops.logsumexp(input, axis, keep_dims=False)[source]

Reduces a dimension of a tensor by calculating exponential for all elements in the dimension, then calculate logarithm of the sum.

logsumexp(input)=log((einputinputmax))+inputmax
Parameters
  • input (Tensor) – The input tensor. With float16 or float32 data type.

  • axis (Union[int, tuple(int), list(int)]) – The dimensions to reduce. Only constant value is allowed.

  • keep_dims (bool) – If True, keep these reduced dimensions and the length is 1. If False , don't keep these dimensions. Default : False .

Returns

Tensor, has the same dtype as the input.

  • If axis is (), and keep_dims is False, the output is a 0-D tensor representing the sum of all elements in the input tensor.

  • If axis is int, set as 2, and keep_dims is False, the shape of output is (input1,input3,...,inputR).

  • If axis is tuple(int), set as (2, 3), and keep_dims is False, the shape of output is (input1,input4,...,inputR).

Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> output = ops.logsumexp(x, 1, keep_dims=True)
>>> print(output.shape)
(3, 1, 5, 6)