mindspore.ops.aminmax
- mindspore.ops.aminmax(input, *, axis=0, keepdims=False)[source]
It returns the minimum and maximum value along the given axis of input tensor.
- Parameters
input (Tensor) – The input tensor, can be any dimension. Set the shape of input tensor as
.- Keyword Arguments
axis (int, optional) – The dimension to reduce. The value range of axis is [-rank, rank), where "rank" is the dimension of input. If axis is None, computes the minimum and maximum value along the entire input tensor. Default:
0
.keepdims (bool, optional) – Whether to maintain dimension. When set to True, the output will keep the same dimension as the input, or the dimension specified by axis is reduced. Default:
False
.
- Returns
tuple (Tensor), containing the minimum value and maximum value of the input tensor.
If keepdims is True, the shape of output tensors is
.If keepdims is False, the shape of output tensors is
.
- Raises
TypeError – If keepdims is not a bool.
TypeError – If axis is not an int and not None.
ValueError – If axis is not in range [-rank, rank).
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32) >>> output0, output1 = ops.aminmax(x) >>> print(output0, output1) 0.0 0.7 >>> output2, output3 = ops.aminmax(x, axis=-1, keepdims=True) >>> print(output2, output3) [0.] [0.7] >>> x = Tensor(np.array([[0.0, 0.4, 0.6, 0.7, 0.1], [0.78, 0.97, 0.5, 0.82, 0.99]]), mindspore.float32) >>> output4, output5 = ops.aminmax(x, axis=None, keepdims=True) >>> print(output4, output5) [[0.]] [[0.99]]