Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

PR

Just a small problem.

I can fix it online!

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.FixedLossScaleUpdateCell

View Source On Gitee
class mindspore.nn.FixedLossScaleUpdateCell(loss_scale_value)[source]

Update cell with fixed loss scaling value.

get_update_cell method of mindspore.amp.FixedLossScaleManager will return this class. It will be called by mindspore.nn.TrainOneStepWithLossScaleCell during trainning.

Parameters

loss_scale_value (float) – Initializes loss scale.

Inputs:
  • loss_scale (Tensor) - The loss scale value during training with shape (), it is ignored in this class.

  • overflow (bool) - Whether the overflow occurs or not.

Outputs:

bool, the input overflow.

Supported Platforms:

Ascend GPU

Examples

>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor, Parameter, nn, ops
>>>
>>> class Net(nn.Cell):
...     def __init__(self, in_features, out_features):
...         super(Net, self).__init__()
...         self.weight = Parameter(Tensor(np.ones([in_features, out_features]).astype(np.float32)),
...                                 name='weight')
...         self.matmul = ops.MatMul()
...
...     def construct(self, x):
...         output = self.matmul(x, self.weight)
...         return output
...
>>> in_features, out_features = 16, 10
>>> net = Net(in_features, out_features)
>>> loss = nn.MSELoss()
>>> optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> net_with_loss = nn.WithLossCell(net, loss)
>>> manager = nn.FixedLossScaleUpdateCell(loss_scale_value=2**12)
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_sense=manager)
>>> input = Tensor(np.ones([out_features, in_features]), mindspore.float32)
>>> labels = Tensor(np.ones([out_features,]), mindspore.float32)
>>> output = train_network(input, labels)
get_loss_scale()[source]

Get Loss Scale value.

Returns

float, the loss scale value.

Examples

>>> from mindspore import nn
>>> manager = nn.FixedLossScaleUpdateCell(loss_scale_value=212)
>>> output = manager.get_loss_scale()
>>> print(output)
212