# Overview of Migration Guide [](https://gitee.com/mindspore/docs/blob/r2.4.1/docs/mindspore/source_en/migration_guide/overview.md) This migration guide contains the complete steps for migrating neural networks to MindSpore from other machine learning frameworks, mainly PyTorch. ```{mermaid} graph LR A(Overview)-->B(migration process) B-->|Step 1|E(<font color=blue>Environmental Preparation</font>) E-.-text1(MindSpore Installation) E-.-text2(AI Platform ModelArts) B-->|Step 2|F(<font color=blue>Model Analysis and Preparation</font>) F-.-text3(Reproducing algorithm, analyzing API compliance using MindSpore Dev Toolkit and analyzing function compliance.) B-->|Step 3|G(<font color=blue>Network Constructing Comparison</font>) G-->K(<font color=blue>Dataset</font>) K-.-text4(Aligning the process of dataset loading, augmentation and reading) G-->L(<font color=blue>Network Constructing</font>) L-.-text5(Aligning the network) G-->P(<font color=blue>Loss Function</font>) P-.-text6(Aligning the loss function) G-->M(<font color=blue>Learning Rate and Optimizer</font>) M-.-text7(Aligning the optimizer and learning rate strategy) G-->N(<font color=blue>Gradient</font>) N-.-text8(Aligning the reverse gradients) G-->O(<font color=blue>Training and Evaluation Process</font>) O-.-text9(Aligning the process of training and evaluation) B-->|Step 4|H(<font color=blue>Function Debugging</font>) H-.-text10(Functional alignment) B-->|Step 5|I(<font color=blue>Precision Tuning</font>) I-.-text11(Precision alignment) B-->|Step 6|J(<font color=blue>Performance Tuning</font>) J-.-text12(Performance Alignment) A-->C(<font color=blue>A Migration Sample</font>) C-.-text13(The network migration sample, taking ResNet50 as an example.) A-->D(<font color=blue>FAQs</font>) D-.-text14(Provides the frequently-asked questions and corresponding solutions in migration process.) click C "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/sample_code.html" click D "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/faq.html" click E "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/enveriment_preparation.html" click F "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/analysis_and_preparation.html" click G "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/model_development/model_development.html" click H "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/debug_and_tune.html#function-debugging" click I "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/debug_and_tune.html#precision-tuning" click J "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/debug_and_tune.html#performance-tuning" click K "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/model_development/dataset.html" click L "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/model_development/model_and_cell.html" click M "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/model_development/learning_rate_and_optimizer.html" click N "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/model_development/gradient.html" click O "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/model_development/training_and_evaluation.html" click P "https://www.mindspore.cn/docs/en/r2.4.1/migration_guide/model_development/loss_function.html" ```