Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.triplet_margin_loss

mindspore.ops.triplet_margin_loss(anchor, positive, negative, margin=1.0, p=2, eps=1e-06, swap=False, reduction='mean')[source]

TripletMarginLoss operation. See mindspore.nn.TripletMarginLoss for details.

Parameters
  • anchor (Tensor) – A sample randomly selected from the training set. Data type must be BasicType.

  • positive (Tensor) – A sample belonging to the same category as anchor, with the same type and shape as anchor.

  • negative (Tensor) – A sample belonging to the different class from anchor, with the same type and shape as anchor.

  • margin (float, optional) – Make a margin between the positive pair and the negative pair. Default: 1.0 .

  • p (int, optional) – The degree of norm for pairwise distance. Default: 2 .

  • eps (float, optional) – Add small value to avoid division by zero. Default: 1e-06.

  • swap (bool, optional) – The distance swap change the negative distance to the distance between positive sample and negative sample. Default: False .

  • reduction (str, optional) –

    Apply specific reduction method to the output: 'none' , 'mean' , 'sum' . Default: 'mean' .

    • 'none': no reduction will be applied.

    • 'mean': compute and return the mean of elements in the output.

    • 'sum': the output elements will be summed.

Returns

Tensor. If reduction is "none", its shape is (N). Otherwise, a scalar value will be returned.

Raises
  • TypeError – If anchor or positive or negative is not a Tensor.

  • TypeError – If dtype of anchor, positive and negative is not the same.

  • TypeError – If margin is not a float.

  • TypeError – If p is not an int.

  • TypeError – If eps is not a float.

  • TypeError – If swap is not a bool.

  • ValueError – If dimensions of input anchor, positive and negative are less than or equal to 1 at the same time.

  • ValueError – If the dimension of input anchor or positive or negative is bigger than or equal to 8.

  • ValueError – If shape of anchor, positive and negative cannot broadcast.

  • ValueError – If reduction is not one of 'none', 'mean', 'sum'.

Supported Platforms:

GPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> anchor = Tensor(np.array([[0.3, 0.7], [0.5, 0.5]]), mindspore.float32)
>>> positive = Tensor(np.array([[0.4, 0.6], [0.4, 0.6]]), mindspore.float32)
>>> negative = Tensor(np.array([[0.2, 0.9], [0.3, 0.7]]), mindspore.float32)
>>> output = ops.triplet_margin_loss(anchor, positive, negative)
>>> print(output)
0.8881968