mindspore.ops.rand_like
- mindspore.ops.rand_like(input, seed=None, *, dtype=None)[source]
Returns a new tensor that fills numbers from the uniform distribution over an interval \([0, 1)\) based on the given shape and dtype.
Warning
The Ascend backend does not support the reproducibility of random numbers, so the seed parameter has no effect.
- Parameters
- Keyword Arguments
dtype (
mindspore.dtype
, optional) – Designated tensor dtype, it must be float type. If None, the same dtype of input will be applied. Default:None
.- Returns
Tensor, with the designated shape and dtype, filled with random numbers from the uniform distribution on the interval \([0, 1)\).
- Raises
TypeError – If seed is not a non-negative integer.
ValueError – If dtype is not a mstype.float_type type.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore as ms >>> from mindspore import Tensor, ops >>> a = Tensor([[2, 3, 4], [1, 2, 3]]) >>> print(ops.rand_like(a, dtype=ms.float32)) [[4.1702199e-01 9.9718481e-01 7.2032452e-01] [9.3255734e-01 1.1438108e-04 1.2812445e-01]]