Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.fmax

mindspore.ops.fmax(input, other)[source]

Computes the maximum of input tensors element-wise.

outputi=max(x1i,x2i)

Note

  • Inputs of input and other comply with the implicit type conversion rules to make the data types consistent.

  • Shapes of input and other should be able to broadcast.

  • If one of the elements to be compared is NaN, another element is returned.

Parameters
  • input (Tensor) – The first tensor. The supported dtypes are: float16, float32, float64, int32, int64.

  • other (Tensor) – The second tensor. The supported dtypes are: float16, float32, float64, int32, int64.

Returns

A Tensor, the shape is the same as the one after broadcasting, and the data type is the one with higher precision or higher digits among the two inputs.

Raises
  • TypeError – If input or other is not Tensor.

  • TypeError – If dtype of input or other is not one of: float16, float32, float64, int32, int64.

  • ValueError – If the shape of input and other can not broadcast.

Supported Platforms:

CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> x1 = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
>>> x2 = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
>>> output = ops.fmax(x1, x2)
>>> print(output)
[4. 5. 6.]