Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.cummin

mindspore.ops.cummin(input, axis)[source]

Returns a tuple (values,indices) where 'values' is the cumulative minimum value of input Tensor input along the dimension axis, and indices is the index location of each minimum value.

yi=min(x1,x2,...,xi)
Parameters
  • input (Tensor) – The input Tensor, rank of input > 0.

  • axis (int) – The dimension to do the operation over. The value of axis must be in the range [-input.ndim, input.ndim - 1].

Returns

tuple [Tensor], tuple of 2 Tensors, containing the cumulative minimum of elements and the index. The shape of each output tensor is the same as input input.

Raises
  • TypeError – If input is not a Tensor.

  • TypeError – If input is a Tensor, but the type is complex or bool.

  • TypeError – If axis is not an int.

  • ValueError – If axis is out the range of [-input.ndim, input.ndim - 1].

Supported Platforms:

Ascend GPU CPU

Examples

>>> from mindspore import Tensor, ops
>>> import mindspore
>>> a = Tensor([-0.2284, -0.6628,  0.0975,  0.2680, -1.3298, -0.4220], mindspore.float32)
>>> output = ops.cummin(a, axis=0)
>>> print(output[0])
[-0.2284 -0.6628 -0.6628 -0.6628 -1.3298 -1.3298]
>>> print(output[1])
[0 1 1 1 4 4]