mindspore.ops.adaptive_avg_pool3d
- mindspore.ops.adaptive_avg_pool3d(input, output_size)[source]
Performs 3D adaptive average pooling on a multi-plane input signal. That is, for any input size, the size of the specified output is
. The number of output features is equal to the number of input planes.Suppose the last 3 dimension size of x is
, the last 3 dimension size of output is .- Parameters
- Returns
Tensor, with the same type as the input.
- Raises
TypeError – If input is not a Tensor.
TypeError – If dtype of input is not float16, float32 or float64.
ValueError – If the dimension of input is not 4D or 5D.
ValueError – If output_size value is not positive.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> # case 1: output_size=(3, 3, 4) >>> output_size=(3, 3, 4) >>> input_val = np.random.randn(4, 3, 5, 6, 7) >>> input = Tensor(input_val, mindspore.float32) >>> output = ops.adaptive_avg_pool3d(input, output_size) >>> print(output.shape) (4, 3, 3, 3, 4) >>> # case 2: output_size=4 >>> output_size=5 >>> input_val = np.random.randn(2, 3, 8, 6, 12) >>> input = Tensor(input_val, mindspore.float32) >>> output = ops.adaptive_avg_pool3d(input, output_size) >>> print(output.shape) (2, 3, 5, 5, 5) >>> # case 3: output_size=(None, 4, 5) >>> output_size=(None, 4, 5) >>> input_val = np.random.randn(4, 1, 9, 10, 8) >>> input = Tensor(input_val, mindspore.float32) >>> output = ops.adaptive_avg_pool3d(input, output_size) >>> print(output.shape) (4, 1, 9, 4, 5)