mindspore.mint.nn.functional.hardsigmoid
- mindspore.mint.nn.functional.hardsigmoid(input)[source]
Hard Sigmoid activation function. Calculates the output according to the input elements.
Hard Sigmoid is defined as:
\[\begin{split}\text{Hardswish}(input) = \begin{cases} 0, & \text{ if } input \leq -3, \\ 1, & \text{ if } input \geq +3, \\ input/6 + 1/2, & \text{ otherwise } \end{cases}\end{split}\]HSigmoid Activation Function Graph:
- Parameters
input (Tensor) – The input Tensor.
- Returns
Tensor, with the same type and shape as the input.
- Raises
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, mint >>> input = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> output = mint.nn.functional.hardsigmoid(input) >>> print(output) [0.3333 0.1666 0.5 0.8335 0.6665]