mindspore.mint.cummax
- mindspore.mint.cummax(input, dim)[source]
Returns a tuple (values, indices) where values is the cumulative maximum value of input Tensor input along the dimension dim, and indices is the index location of each maximum value.
\[\begin{split}\begin{array}{ll} \\ y_{i} = \max(x_{1}, x_{2}, ... , x_{i}) \end{array}\end{split}\]- Parameters
- Returns
tuple [Tensor], tuple of 2 Tensors, containing the cumulative maximum of elements and the index. The shape of each output tensor is the same as that of input input.
- Raises
TypeError – If input is not a Tensor.
TypeError – If dim is not an int.
ValueError – If dim is out the range of [-input.ndim, input.ndim - 1].
Note
O2 mode is not supported in Ascend.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> from mindspore import mint >>> x = Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32)) >>> output = mint.cummax(x, dim=0) >>> print(output[0]) [[ 3. 4. 6. 10.] [ 3. 6. 7. 10.] [ 4. 6. 8. 10.] [ 4. 6. 8. 10.]] >>> print(output[1]) [[0 0 0 0] [0 1 1 0] [2 1 2 0] [2 1 2 0]]