mindspore.experimental.es.EsEmbeddingLookup
- class mindspore.experimental.es.EsEmbeddingLookup(table_id, es_initializer, embedding_dim, max_key_num, optimizer_mode=None, optimizer_params=None, es_filter=None, es_padding_key=None, es_completion_key=None)[source]
Look up a PS embedding.
Warning
This is an experimental EmbeddingService API that is subject to change.
- Parameters
table_id (int) – The table id.
es_initializer (EsInitializer) – The EsInitialize object for PS embedding with table_id, which can be None when the inference is performed.
embedding_dim (int) – The embedding dim of keys for PS embedding with table_id.
max_key_num (int) – The num of keys when lookup.
optimizer_mode (str) – The type of optimizer. Default is
None
.optimizer_params (tuple[float]) – The parameters of optimizer. Default is
None
.es_filter (CounterFilter) – The option of counter filter for PS embedding with table_id. Default is
None
.es_padding_key (PaddingParamsOption) – The option of padding key for PS embedding with table_id. Default is
None
.es_completion_key (CompletionKeyOption) – The option of completion key for PS embedding with table_id. Default is
None
.
- Inputs:
keys (Tensor): The keys of each feature in PS embedding.
actual_keys_input (Tensor): Tensor composed of all unique elements of keys.
unique_indices (Tensor): The index value of each element in keys to actual_keys_input .
key_count (Tensor): The count of each element in the actual_keys_input to keys.
- Supported Platforms:
Atlas A2 training series products