Source code for mindspore.train.callback._checkpoint

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Checkpoint related classes and functions."""
from __future__ import absolute_import

import os
import stat
import time
import threading

import mindspore.context as context
from mindspore import log as logger
from mindspore import nn
from mindspore import _checkparam as Validator
from mindspore.train._utils import _make_directory
from mindspore.train.serialization import save_checkpoint, _save_graph
from mindspore.parallel._cell_wrapper import destroy_allgather_cell
from mindspore.parallel._recovery_context import _set_recovery_context, _get_recovery_context
from mindspore.parallel._auto_parallel_context import _get_auto_parallel_context
from mindspore.parallel._utils import _get_device_num
from mindspore.communication.management import get_rank
from mindspore.train._utils import get_parameter_redundancy, remove_param_redundancy
from mindspore.train.callback._callback import Callback, set_cur_net
from mindspore.common.tensor import Tensor
from mindspore.common.parameter import Parameter
from mindspore.common.generator import Generator
from mindspore.common.api import _cell_graph_executor
from mindspore._c_expression import collect_host_info, get_clock_syscnt

_cur_dir = os.getcwd()
SAVE_DIR = _cur_dir
_info_list = ["epoch_num", "step_num"]


def _get_dp_tp_from_redundancy(redundancy_tuple):
    """From redundancy get dp and tp"""
    dp = []
    tp = []
    for dp_value in redundancy_tuple:
        dp.append(list(dp_value))
    for i in range(len(redundancy_tuple[0])):
        tp.append([v[i] for v in redundancy_tuple])
    return dp, tp


def _get_dp_tp_from_layout(parameter_redundancy_dict):
    """From layout dict get dp and tp"""
    tp = []
    dp = []
    value_len = 0
    for _, value in parameter_redundancy_dict.items():
        if len(value) > value_len:
            value_len = len(value)
            dp, tp = _get_dp_tp_from_redundancy(value)
    return dp, tp


def _chg_ckpt_file_name_if_same_exist(directory, prefix, exception=False):
    """Check if there is a file with the same name."""
    if callable(prefix) or callable(directory):
        return prefix
    files = os.listdir(directory)
    suffix_num = 0
    pre_len = len(prefix)
    for filename in files:
        name_ext = os.path.splitext(filename)
        if exception and filename[-16:] != "_breakpoint.ckpt":
            continue
        if not exception and (name_ext[-1] != ".ckpt" or filename[-16:] == "_breakpoint.ckpt"):
            continue
        # find same prefix file
        if filename.find(prefix) == 0 and not filename[pre_len].isalpha():
            # add the max suffix + 1
            index = filename[pre_len:].find("-")
            if index == 0:
                suffix_num = max(suffix_num, 1)
            elif index != -1:
                num = filename[pre_len + 1:pre_len + index]
                if num.isdigit():
                    suffix_num = max(suffix_num, int(num) + 1)

    if suffix_num != 0:
        prefix = f'{prefix}_{suffix_num}'

    return prefix


def _check_format_and_other_params(format, enc_key, enc_mode, crc_check=False, async_save=False, exception_save=False,
                                   map_param_inc=False, global_step_num=None):
    param_not_default = (enc_key is not None or enc_mode != "AES-GCM" or crc_check or async_save
                         or exception_save or map_param_inc or global_step_num is not None)
    if format == "safetensors" and param_not_default:
        raise ValueError("For 'save_checkpoint', when format is 'safetensors', other param must be default.")


[docs]class CheckpointConfig: """ The configuration of model checkpoint. Note: - During the training process, if dataset is transmitted through the data channel, it is suggested to set 'save_checkpoint_steps' to an integer multiple of loop_size. Otherwise, the time to save the checkpoint may be biased. It is recommended to set only one save strategy and one keep strategy at the same time. If both `save_checkpoint_steps` and `save_checkpoint_seconds` are set, `save_checkpoint_seconds` will be invalid. If both `keep_checkpoint_max` and `keep_checkpoint_per_n_minutes` are set, `keep_checkpoint_per_n_minutes` will be invalid. - The `enc_mode` and `crc_check` parameters are mutually exclusive and cannot be configured simultaneously. Args: save_checkpoint_steps (int): Steps to save checkpoint. Default: ``1`` . save_checkpoint_seconds (int): Seconds to save checkpoint. Can't be used with save_checkpoint_steps at the same time. Default: ``0`` . keep_checkpoint_max (int): Maximum number of checkpoint files can be saved. Default: ``5`` . keep_checkpoint_per_n_minutes (int): Save the checkpoint file every `keep_checkpoint_per_n_minutes` minutes. Can't be used with keep_checkpoint_max at the same time. Default: ``0`` . integrated_save (bool): Whether to merge and save the split Tensor in the automatic parallel scenario. Integrated save function is only supported in automatic parallel scene, not supported in manual parallel. Default: ``True`` . async_save (bool): Whether asynchronous execution saves the checkpoint to a file. Default: ``False`` . saved_network (Cell): Network to be saved in checkpoint file. If the saved_network has no relation with the network in training, the initial value of saved_network will be saved. Default: ``None`` . append_info (list): The information save to checkpoint file. Support "epoch_num", "step_num" and dict. The key of dict must be str, the value of dict must be one of int, float, bool, Parameter or Tensor. Default: ``None`` . enc_key (Union[None, bytes]): Byte type key used for encryption. If the value is None, the encryption is not required. Default: ``None`` . enc_mode (str): This parameter is valid only when enc_key is not set to None. Specifies the encryption mode, currently supports 'AES-GCM', 'AES-CBC' and 'SM4-CBC'. Default: ``'AES-GCM'`` . exception_save (bool): Whether to save the current checkpoint when an exception occurs. Default: ``False`` . crc_check (bool): Whether to perform crc32 calculation when saving checkpoint and save the calculation result to the end of ckpt. Default: ``False`` . remove_redundancy (bool): Whether to enable saving the checkpoint with redundancy removal. Redundancy removal refers to eliminating redundant data in data parallelism mode. Default: ``False`` , means redundant-free saving is not enabled. format (str): Format of the output file, can be "ckpt" or "safetensors". Default: "ckpt". kwargs (dict): Configuration options dictionary. Raises: ValueError: If input parameter is not the correct type. Examples: >>> from mindspore import nn >>> from mindspore.train import Model, CheckpointConfig, ModelCheckpoint >>> >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/r2.4.0/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') >>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9) >>> model = Model(net, loss_fn=loss, optimizer=optim) >>> # Create the dataset taking MNIST as an example. Refer to >>> # https://gitee.com/mindspore/docs/blob/r2.4.0/docs/mindspore/code/mnist.py >>> dataset = create_dataset() >>> config = CheckpointConfig(save_checkpoint_seconds=100, keep_checkpoint_per_n_minutes=5, saved_network=net) >>> config.save_checkpoint_steps 1 >>> config.save_checkpoint_seconds >>> config.keep_checkpoint_max 5 >>> config.keep_checkpoint_per_n_minutes >>> config.integrated_save True >>> config.async_save False >>> config.saved_network >>> config.enc_key >>> config.enc_mode 'AES-GCM' >>> config.append_dict >>> config.get_checkpoint_policy >>> ckpoint_cb = ModelCheckpoint(prefix='LeNet5', directory='./checkpoint', config=config) >>> model.train(10, dataset, callbacks=ckpoint_cb) """ def __init__(self, save_checkpoint_steps=1, save_checkpoint_seconds=0, keep_checkpoint_max=5, keep_checkpoint_per_n_minutes=0, integrated_save=True, async_save=False, saved_network=None, append_info=None, enc_key=None, enc_mode='AES-GCM', exception_save=False, crc_check=False, remove_redundancy=False, format="ckpt", **kwargs): if save_checkpoint_steps is not None: save_checkpoint_steps = Validator.check_non_negative_int(save_checkpoint_steps) if save_checkpoint_seconds is not None: save_checkpoint_seconds = Validator.check_non_negative_int(save_checkpoint_seconds) if keep_checkpoint_max is not None: keep_checkpoint_max = Validator.check_non_negative_int(keep_checkpoint_max) if keep_checkpoint_per_n_minutes is not None: keep_checkpoint_per_n_minutes = Validator.check_non_negative_int(keep_checkpoint_per_n_minutes) if saved_network is not None and not isinstance(saved_network, nn.Cell): raise TypeError(f"For 'CheckpointConfig', the type of 'saved_network' must be None or Cell, " f"but got {str(type(saved_network))}.") if not save_checkpoint_steps and not save_checkpoint_seconds and \ not keep_checkpoint_max and not keep_checkpoint_per_n_minutes: raise ValueError("For 'CheckpointConfig', the input arguments 'save_checkpoint_steps', " "'save_checkpoint_seconds', " "'keep_checkpoint_max' and 'keep_checkpoint_per_n_minutes' can't be all None or 0.") Validator.check_bool(exception_save) self.exception_save = exception_save self._save_checkpoint_steps = save_checkpoint_steps self._save_checkpoint_seconds = save_checkpoint_seconds if self._save_checkpoint_steps and self._save_checkpoint_steps > 0: self._save_checkpoint_seconds = None self._keep_checkpoint_max = keep_checkpoint_max self._keep_checkpoint_per_n_minutes = keep_checkpoint_per_n_minutes if self._keep_checkpoint_max and self._keep_checkpoint_max > 0: self._keep_checkpoint_per_n_minutes = None else: if not self._keep_checkpoint_per_n_minutes or self._keep_checkpoint_per_n_minutes == 0: self._keep_checkpoint_max = 1 self._integrated_save = Validator.check_bool(integrated_save) self._async_save = Validator.check_bool(async_save) self._saved_network = saved_network self._append_dict = self._handle_append_info(append_info) self._enc_key = Validator.check_isinstance('enc_key', enc_key, (type(None), bytes)) self._enc_mode = Validator.check_isinstance('enc_mode', enc_mode, str) self._crc_check = Validator.check_isinstance('crc_check', crc_check, bool) self._format = Validator.check_isinstance('format', format, str) self._map_param_inc = kwargs.get('incremental', False) self.enable_redundance = kwargs.get('enable_redundance', False) self.remove_redundancy = Validator.check_isinstance('remove_redundancy', remove_redundancy, bool) _check_format_and_other_params(format, enc_key, enc_mode, crc_check, async_save, exception_save, self._map_param_inc) @property def save_checkpoint_steps(self): """ Get the value of steps to save checkpoint. Returns: int, steps to save checkpoint. """ return self._save_checkpoint_steps @property def save_checkpoint_seconds(self): """Get the value of _save_checkpoint_seconds. Returns: int, seconds to save the checkpoint file. """ return self._save_checkpoint_seconds @property def keep_checkpoint_max(self): """ Get the value of maximum number of checkpoint files can be saved. Returns: int, Maximum number of checkpoint files can be saved. """ return self._keep_checkpoint_max @property def keep_checkpoint_per_n_minutes(self): """ Get the value of save the checkpoint file every n minutes. Returns: Int, save the checkpoint file every n minutes. """ return self._keep_checkpoint_per_n_minutes @property def integrated_save(self): """ Get the value of whether to merge and save the split Tensor in the automatic parallel scenario. Returns: bool, whether to merge and save the split Tensor in the automatic parallel scenario. """ return self._integrated_save @property def async_save(self): """ Get the value of whether asynchronous execution saves the checkpoint to a file. Returns: bool, whether asynchronous execution saves the checkpoint to a file. """ return self._async_save @property def saved_network(self): """ Get the value of network to be saved in checkpoint file. Returns: Cell, network to be saved in checkpoint file. """ return self._saved_network @property def enc_key(self): """ Get the value of byte type key used for encryption. Returns: (None, bytes), byte type key used for encryption. """ return self._enc_key @property def enc_mode(self): """ Get the value of the encryption mode. Returns: str, encryption mode. """ return self._enc_mode @property def crc_check(self): """ Get the value of the whether to enable crc check. Returns: bool, whether to enable crc check. """ return self._crc_check @property def format(self): return self._format @property def append_dict(self): """ Get the value of information dict saved to checkpoint file. Returns: dict, the information saved to checkpoint file. """ return self._append_dict @property def map_param_inc(self): """ Get the value of whether to save map Parameter incrementally. Returns: bool, whether to save map Parameter incrementally. """ return self._map_param_inc
[docs] def get_checkpoint_policy(self): """ Get the policy of checkpoint. Returns: dict, the information of checkpoint policy. """ checkpoint_policy = {'save_checkpoint_steps': self.save_checkpoint_steps, 'save_checkpoint_seconds': self.save_checkpoint_seconds, 'keep_checkpoint_max': self.keep_checkpoint_max, 'keep_checkpoint_per_n_minutes': self.keep_checkpoint_per_n_minutes, 'saved_network': self.saved_network} return checkpoint_policy
@staticmethod def _handle_append_info(append_info): """Handle ckpt append info.""" if append_info is None or append_info == []: return None if not isinstance(append_info, list): raise TypeError(f"For 'CheckpointConfig', the type of 'append_info' must be list," f"but got {str(type(append_info))}.") handle_append_info = {} if "epoch_num" in append_info: handle_append_info["epoch_num"] = 0 if "step_num" in append_info: handle_append_info["step_num"] = 0 if "random_op" in append_info: handle_append_info["random_op"] = 0 dict_num = 0 for element in append_info: if not isinstance(element, str) and not isinstance(element, dict): raise TypeError(f"For 'CheckpointConfig', the type of 'append_info' element must be str or dict," f"but got {str(type(element))}.") if isinstance(element, str) and element not in _info_list: raise ValueError(f"For 'CheckpointConfig', the value of element in the argument 'append_info' " f"must be in {_info_list}, " f"but got {element}.") if isinstance(element, dict): dict_num += 1 if dict_num > 1: raise TypeError(f"For 'CheckpointConfig', the element of 'append_info' must has only one dict, " "but got {dict_num}") for key, value in element.items(): if isinstance(key, str) and isinstance(value, (int, float, bool, str, Parameter, Tensor, Generator)): handle_append_info[key] = value else: raise TypeError(f"For 'CheckpointConfig', the key type of the dict 'append_info' " f"must be string, the value type must be int or float or bool, " f"but got key type {type(key)}, value type {type(value)}") return handle_append_info
[docs]class ModelCheckpoint(Callback): """ The checkpoint callback class. It is called to combine with train process and save the model and network parameters after training. Note: In the distributed training scenario, please specify different directories for each training process to save the checkpoint file. Otherwise, the training may fail. If this callback is used in the `model` function, the checkpoint file will saved parameters of the optimizer by default. Args: prefix (Union[str, callable object]): The prefix name or callable object to generate name of checkpoint files. Default: ``'CKP'`` . directory (Union[str, callable object]): The folder path where the checkpoint is stored, or the callable object used to generate the path. By default, the file is saved in the current directory. Default: ``None`` . config (CheckpointConfig): Checkpoint strategy configuration. Default: ``None`` . Raises: ValueError: If `prefix` is not str or contains the '/' character and is not a callable object. ValueError: If `directory` is not str and is not a callable object. TypeError: If the config is not CheckpointConfig type. Examples: >>> import numpy as np >>> import mindspore.dataset as ds >>> from mindspore import nn >>> from mindspore.train import Model, ModelCheckpoint >>> >>> data = {"x": np.float32(np.random.rand(64, 10)), "y": np.random.randint(0, 5, (64,))} >>> train_dataset = ds.NumpySlicesDataset(data=data).batch(32) >>> net = nn.Dense(10, 5) >>> crit = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') >>> opt = nn.Momentum(net.trainable_params(), 0.01, 0.9) >>> ckpt_callback = ModelCheckpoint(prefix="myckpt") >>> model = Model(network=net, optimizer=opt, loss_fn=crit) >>> model.train(2, train_dataset, callbacks=[ckpt_callback]) """ def __init__(self, prefix='CKP', directory=None, config=None): super(ModelCheckpoint, self).__init__() self._latest_ckpt_file_name = "" self._init_time = time.time() self._last_time = time.time() self._last_time_for_keep = time.time() self._last_triggered_step = 0 """a callable for users to set self-defined prefix.""" self._prefix_func = None """a callable for users to set self-defined directory.""" self._directory_func = None if not callable(prefix) and (not isinstance(prefix, str) or prefix.find('/') >= 0): raise ValueError("For 'ModelCheckpoint', the argument 'prefix' " "for checkpoint file name is invalid, it must be " "callable or string that does not contain '/', but got {}.".format(prefix)) self._prefix = prefix self._exception_prefix = prefix if directory is not None: if callable(directory): self._directory_func = directory else: self._directory = _make_directory(directory) else: self._directory = _cur_dir if callable(prefix): self._prefix_func = prefix if _get_recovery_context("enable_recovery"): _set_recovery_context(ckpt_path=self._directory) if config is None: self._config = CheckpointConfig() else: if not isinstance(config, CheckpointConfig): raise TypeError("For 'ModelCheckpoint', the type of argument 'config' should be " "'CheckpointConfig', " "but got {}.".format(type(config))) self._config = config self._aiturbo_init_flag = os.getenv("AITURBO") == "1" # get existing checkpoint files if self._aiturbo_init_flag: from aiturbo.checkpoint.aiturbo_mindspore_ckpt import CheckpointShmManager self._manager = CheckpointShmManager() else: self._manager = CheckpointManager(self._config.format) if not callable(directory) and not callable(prefix): self._prefix = _chg_ckpt_file_name_if_same_exist(self._directory, self._prefix) self._append_dict = self._config.append_dict or {} self._append_epoch_num = self._append_dict.get("epoch_num") if "epoch_num" in self._append_dict else 0 self._append_step_num = self._append_dict.get("step_num") if "step_num" in self._append_dict else 0 self._graph_saved = False self._need_flush_from_cache = True self._map_param_inc = self._config.map_param_inc
[docs] def step_end(self, run_context): """ Save the checkpoint at the end of step. Args: run_context (RunContext): Context of the train running. """ cb_params = run_context.original_args() if self._aiturbo_init_flag: from aiturbo.checkpoint import aiturbo_mindspore as aiturbo ckpt_storage_path = self._directory rank_id = get_rank() stage_num = _get_auto_parallel_context("pipeline_stages") stage_rank_num = _get_device_num() // stage_num param_layout = cb_params.train_network.parameter_layout_dict if not param_layout: layout = {"stage_num": stage_num, "stage_rank_num": stage_rank_num, "stage_layout": None} aiturbo.init(ckpt_storage_path, rank_id, layout, None, False, None) else: device_num = _get_device_num() chunk_size = device_num // stage_num initial_rank = (rank_id // chunk_size) * chunk_size param_redundancy_dict = get_parameter_redundancy(param_layout, initial_rank) dp, _ = _get_dp_tp_from_layout(param_redundancy_dict) layout = {"stage_num": stage_num, "stage_rank_num": stage_rank_num, "stage_layout": param_redundancy_dict} single_params = remove_param_redundancy(param_redundancy_dict) single_params = {device_id: list(params) for device_id, params in single_params.items()} aiturbo.init(ckpt_storage_path, rank_id, layout, single_params, not self._config.enable_redundance, dp) self._aiturbo_init_flag = False if self._prefix_func: self._prefix = self._prefix_func(cb_params) if not isinstance(self._prefix, str) or self._prefix.find('/') >= 0: raise ValueError("For 'ModelCheckpoint', the argument 'prefix' " "for checkpoint file name is callable, it must return a " "string that does not contain '/', but got {}.".format(self._prefix)) if self._directory_func: self._directory = self._directory_func(cb_params) collect_host_info("Callback", "ModelCheckpoint", "step_end", start_time=get_clock_syscnt(), level=1) # In disaster recovery scenario, the training process may be rolled back to the last step where # the ckpt was successfully saved, so the _last_triggered_step should be updated. if _get_recovery_context("enable_recovery") and cb_params.last_save_ckpt_step is not None: self._last_triggered_step = cb_params.last_save_ckpt_step cb_params.last_save_ckpt_step = None _make_directory(self._directory) # save graph (only once) if not self._graph_saved: graph_file_name = os.path.join(self._directory, self._prefix + '-graph.meta') if os.path.isfile(graph_file_name) and context.get_context("mode") == context.GRAPH_MODE: os.remove(graph_file_name) _save_graph(cb_params.train_network, graph_file_name) self._graph_saved = True thread_list = threading.enumerate() for thread in thread_list: if thread.getName() == "asyn_save_ckpt": thread.join() self._save_ckpt(cb_params)
[docs] def end(self, run_context): """ Save the last checkpoint after training finished. Args: run_context (RunContext): Context of the train running. """ cb_params = run_context.original_args() collect_host_info("Callback", "ModelCheckpoint", "end", start_time=get_clock_syscnt(), level=1) _to_save_last_ckpt = True self._save_ckpt(cb_params, _to_save_last_ckpt) thread_list = threading.enumerate() for thread in thread_list: if thread.getName() == "asyn_save_ckpt": thread.join() destroy_allgather_cell()
def _check_save_ckpt(self, cb_params, force_to_save): """Check whether save checkpoint files or not.""" if self._config.save_checkpoint_steps and self._config.save_checkpoint_steps > 0: if cb_params.cur_step_num >= self._last_triggered_step + self._config.save_checkpoint_steps \ or force_to_save is True: return True elif self._config.save_checkpoint_seconds and self._config.save_checkpoint_seconds > 0: self._cur_time = time.time() if (self._cur_time - self._last_time) > self._config.save_checkpoint_seconds or force_to_save: self._last_time = self._cur_time return True return False def _append_dict_content(self, epoch_num, step_num): """Append append_dict content.""" if "epoch_num" in self._append_dict: self._append_dict["epoch_num"] = self._append_epoch_num + epoch_num if "step_num" in self._append_dict: self._append_dict["step_num"] = self._append_step_num + step_num def _save_ckpt(self, cb_params, force_to_save=False): """Save checkpoint files.""" if cb_params.cur_step_num == self._last_triggered_step: return # if param is cache enable, flush data from cache to host before save_ckpt if self._need_flush_from_cache: self._flush_from_cache(cb_params) save_ckpt = self._check_save_ckpt(cb_params, force_to_save) step_num_in_epoch = int((cb_params.cur_step_num - 1) % cb_params.batch_num + 1) if save_ckpt: if self._prefix_func: cur_ckpoint_file = self._prefix + f".{self._config.format}" else: cur_ckpoint_file = self._prefix + "-" + str(cb_params.cur_epoch_num) + "_" \ + str(step_num_in_epoch) + f".{self._config.format}" # update checkpoint file list. self._manager.update_ckpoint_filelist(self._directory, self._prefix) # keep checkpoint files number equal max number. if self._config.keep_checkpoint_max and 0 < self._config.keep_checkpoint_max <= self._manager.ckpoint_num: self._manager.remove_oldest_ckpoint_file() elif self._config.keep_checkpoint_per_n_minutes and self._config.keep_checkpoint_per_n_minutes > 0: self._cur_time_for_keep = time.time() if (self._cur_time_for_keep - self._last_time_for_keep) \ < self._config.keep_checkpoint_per_n_minutes * 60: self._manager.keep_one_ckpoint_per_minutes(self._config.keep_checkpoint_per_n_minutes, self._cur_time_for_keep) # generate the new checkpoint file and rename it. global SAVE_DIR SAVE_DIR = self._directory cur_file = os.path.join(self._directory, cur_ckpoint_file) self._last_time_for_keep = time.time() self._last_triggered_step = cb_params.cur_step_num # TODO(MS_DISABLE_REF_MODE): Delete when remove MS_DISABLE_REF_MODE env. if context.get_context("enable_ge") and os.getenv('MS_DISABLE_REF_MODE') \ and context.get_context("mode") == context.GRAPH_MODE: set_cur_net(cb_params.train_network) cb_params.train_network.add_flags(ge_sync_data=True) _cell_graph_executor(cb_params.train_network, phase='save') self._append_dict_content(cb_params.cur_epoch_num, cb_params.cur_step_num) network = self._config.saved_network if self._config.saved_network is not None else cb_params.train_network if os.getenv("AITURBO") == "1": save_checkpoint(network, cur_file, self._config.integrated_save, self._config.async_save, self._append_dict, self._config.enc_key, self._config.enc_mode, crc_check=self._config.crc_check, incremental=self._map_param_inc, global_step_num=cb_params.cur_step_num) elif self._config.remove_redundancy: parallel_mode = context.get_auto_parallel_context("parallel_mode") if parallel_mode == "stand_alone": raise TypeError(f"The deduplication feature for saving checkpoint can only be used " f"in parallel scenarios, but got {parallel_mode}.") param_layout = network.parameter_layout_dict rank_id = get_rank() if param_layout: device_num = _get_device_num() stage_num = _get_auto_parallel_context("pipeline_stages") chunk_size = device_num // stage_num initial_rank = (rank_id // chunk_size) * chunk_size param_redundancy_dict = get_parameter_redundancy(param_layout, initial_rank) single_params = remove_param_redundancy(param_redundancy_dict) save_param_names = single_params.get(rank_id) param_layout_set = set(param_layout.keys()) if save_param_names == param_layout.keys(): logger.warning( f"For remove_redundancy save checkpoint, the saved parameters are non-redundant.") def choice_func(x): return x not in param_layout_set or x in save_param_names else: param_redundancy_dict = get_parameter_redundancy(network) single_params = remove_param_redundancy(param_redundancy_dict) save_param_names = single_params.get(rank_id) def choice_func(x): return x in save_param_names save_checkpoint(network, cur_file, False, self._config.async_save, self._append_dict, self._config.enc_key, self._config.enc_mode, crc_check=self._config.crc_check, format=self._config.format, incremental=self._map_param_inc, choice_func=choice_func) else: save_checkpoint(network, cur_file, self._config.integrated_save, self._config.async_save, self._append_dict, self._config.enc_key, self._config.enc_mode, crc_check=self._config.crc_check, format=self._config.format, incremental=self._map_param_inc) self._latest_ckpt_file_name = cur_file def _flush_from_cache(self, cb_params): """Flush cache data to host if tensor is cache enable.""" has_cache_params = False params = cb_params.train_network.get_parameters() for param in params: if param.cache_enable: has_cache_params = True Tensor(param).flush_from_cache() if not has_cache_params: self._need_flush_from_cache = False @property def latest_ckpt_file_name(self): """Return the latest checkpoint path and file name.""" return self._latest_ckpt_file_name @property def _get_save_checkpoint_steps(self): """Return save ckpt steps""" return self._config.save_checkpoint_steps @property def _get_last_trigger_step(self): """Return last triggered steps""" return self._last_triggered_step
class CheckpointManager: """Manage checkpoint files according to train_config of checkpoint.""" def __init__(self, format='ckpt'): self._ckpoint_filelist = [] self._format = format @property def ckpoint_filelist(self): """Get all the related checkpoint files managed here.""" return self._ckpoint_filelist @property def ckpoint_num(self): """Get the number of the related checkpoint files managed here.""" return len(self._ckpoint_filelist) def update_ckpoint_filelist(self, directory, prefix): """Update the checkpoint file list.""" self._ckpoint_filelist = [] format = self._format format_length = len(format) + 1 files = os.listdir(directory) for filename in files: if os.path.splitext(filename)[-1] == f".{format}" and filename.startswith(prefix + "-"): mid_name = filename[len(prefix):-format_length] flag = not (True in [char.isalpha() for char in mid_name]) if flag: self._ckpoint_filelist.append(os.path.join(directory, filename)) def remove_ckpoint_file(self, file_name): """Remove the specified checkpoint file from this checkpoint manager and also from the directory.""" try: os.chmod(file_name, stat.S_IWRITE) os.remove(file_name) self._ckpoint_filelist.remove(file_name) except OSError: logger.warning("OSError, failed to remove the older ckpt file %s.", file_name) except ValueError: logger.warning("ValueError, failed to remove the older ckpt file %s.", file_name) def remove_oldest_ckpoint_file(self): """Remove the oldest checkpoint file from this checkpoint manager and also from the directory.""" ckpoint_files = sorted(self._ckpoint_filelist, key=os.path.getmtime) self.remove_ckpoint_file(ckpoint_files[0]) def keep_one_ckpoint_per_minutes(self, minutes, cur_time): """Only keep the latest one ckpt file per minutes, remove other files generated in [last_time, cur_time].""" del_list = [] oldest_file = '' oldest_time = cur_time for ck_file in self._ckpoint_filelist: modify_time = os.path.getmtime(ck_file) if cur_time - modify_time < 60 * minutes: del_list.append(ck_file) if modify_time < oldest_time: oldest_time = modify_time oldest_file = ck_file for mv_file in del_list: if mv_file == oldest_file: continue self.remove_ckpoint_file(mv_file)