Differences with torch.log

View Source On Gitee

torch.log

torch.log(input, *, out=None) -> Tensor

For more information, see torch.log.

mindspore.ops.log

mindspore.ops.log(input) -> Tensor

For more information, see mindspore.ops.log.

Differences

MindSpore API function is consistent with that of PyTorch, with differences in the data types supported by the parameters.

PyTorch: The dtype of the parameter input can be int or float.

MindSpore: The dtype of the parameter input can be float16, float32 or float64 on CPU platform, while the dtype of the parameter input can be float16 or float32 on Ascend platform.

Categories

Subcategories

PyTorch

MindSpore

Difference

Parameters

Parameter 1

input

input

Both are Tensor, and the dtype of the parameter input in torch.log can be int or float. The dtype of the parameter input in mindspore.ops.log can be float16, float32, float64 on CPU platform, while float16 or float32 on Ascend platform.

Parameter 2

out

-

For detailed, refer to General Difference Parameter Table.