mindspore.train.Recall

View Source On Gitee
class mindspore.train.Recall(eval_type='classification')[source]

Calculates recall for classification and multilabel data.

The recall class creates two local variables, \(\text{true_positive}\) and \(\text{false_negative}\), that are used to compute the recall. The calculation formula is:

\[\text{recall} = \frac{\text{true_positive}}{\text{true_positive} + \text{false_negative}}\]

Note

In the multi-label cases, the elements of \(y\) and \(y_{pred}\) must be 0 or 1.

Parameters

eval_type (str) – 'classification' or 'multilabel' are supported. Default: 'classification' .

Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore.train import Recall
>>>
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
>>> y = Tensor(np.array([1, 0, 1]))
>>> metric = Recall('classification')
>>> metric.clear()
>>> metric.update(x, y)
>>> recall = metric.eval()
>>> print(recall)
[1. 0.5]
clear()[source]

Clears the internal evaluation result.

eval(average=False)[source]

Computes the recall.

Parameters

average (bool) – Specify whether calculate the average recall. Default: False .

Returns

numpy.float64, the computed result.

update(*inputs)[source]

Updates the internal evaluation result with y_pred and y.

Parameters

inputs – Input y_pred and y. y_pred and y are a Tensor, a list or an array. For 'classification' evaluation type, y_pred is in most cases (not strictly) a list of floating numbers in range \([0, 1]\) and the shape is \((N, C)\), where \(N\) is the number of cases and \(C\) is the number of categories. Shape of y can be \((N, C)\) with values 0 and 1 if one-hot encoding is used or the shape is \((N,)\) with integer values if index of category is used. For 'multilabel' evaluation type, y_pred and y can only be one-hot encoding with values 0 or 1. Indices with 1 indicate positive category. The shape of y_pred and y are both \((N, C)\).

Raises

ValueError – If the number of inputs is not 2.