mindspore.ops.bessel_k0

View Source On Gitee
mindspore.ops.bessel_k0(x)[source]

Computes modified Bessel function of the second kind, order 0 element-wise.

The formula is defined as:

\[\begin{split}\begin{array}{ll} \\ K_{0}(x)= \lim_{\nu \to 0} \left(\frac{\pi}{2}\right) \frac {I_{-\nu}(x)-I_{\nu}(x)}{\sin (\nu \pi)} = \int_{0}^{\infty} e^{-x \cosh t} d t \end{array}\end{split}\]

where \(I_{0}\) is modified Bessel function of the first kind, order 0.

Parameters

x (Tensor) – The input tensor. The data type must be float16, float32 or float64.

Returns

Tensor, has the same shape and dtype as the x.

Raises
  • TypeError – If x is not a Tensor.

  • TypeError – If dtype of x is not float16, float32 or float64.

Supported Platforms:

GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> x = Tensor(np.array([0.5, 1., 2., 4.]), mindspore.float32)
>>> output = ops.bessel_k0(x)
>>> print(output)
[0.92441907  0.42102444  0.11389387  0.01115968]