mindspore.ms_function

View Source On Gitee
mindspore.ms_function(fn=None, input_signature=None, hash_args=None, jit_config=None)[source]

Create a callable MindSpore graph from a Python function.

This allows the MindSpore runtime to apply optimizations based on graph.

Note

  • ms_function will be deprecated and removed in a future version. Please use mindspore.jit() instead.

  • If input_signature is specified, each input of fn must be a Tensor. And the input arguments for fn will not accept **kwargs.

Parameters
  • fn (Function) – The Python function that will be run as a graph. Default: None .

  • input_signature (Tensor) – The Tensor which describes the input arguments. The shape and dtype of the Tensor will be supplied to this function. The shape and dtype of actual inputs of fn should keep the same as input_signature. Otherwise, TypeError will be raised. Default: None .

  • hash_args (Union[Object, List or Tuple of Objects]) – The local free variables used inside fn, like functions or objects of class defined outside fn. Calling fn again with change of hash_args will trigger recompilation. Default: None .

  • jit_config (JitConfig) – Jit config for compile. Default: None .

Returns

Function, if fn is not None, returns a callable function that will execute the compiled function; If fn is None, returns a decorator and when this decorator invokes with a single fn argument, the callable function is equal to the case when fn is not None.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore import ops
>>> from mindspore import ms_function
...
>>> x = Tensor(np.ones([1, 1, 3, 3]).astype(np.float32))
>>> y = Tensor(np.ones([1, 1, 3, 3]).astype(np.float32))
...
>>> # create a callable MindSpore graph by calling ms_function
>>> def tensor_add(x, y):
...     z = x + y
...     return z
...
>>> tensor_add_graph = ms_function(fn=tensor_add)
>>> out = tensor_add_graph(x, y)
...
>>> # create a callable MindSpore graph through decorator @ms_function
>>> @ms_function
... def tensor_add_with_dec(x, y):
...     z = x + y
...     return z
...
>>> out = tensor_add_with_dec(x, y)
...
>>> # create a callable MindSpore graph through decorator @ms_function with input_signature parameter
>>> @ms_function(input_signature=(Tensor(np.ones([1, 1, 3, 3]).astype(np.float32)),
...                               Tensor(np.ones([1, 1, 3, 3]).astype(np.float32))))
... def tensor_add_with_sig(x, y):
...     z = x + y
...     return z
...
>>> out = tensor_add_with_sig(x, y)
...
... # Set hash_args as fn, otherwise cache of compiled `closure_fn` will not be reused.
... # While fn differs during calling again, recompilation will be triggered.
>>> def func(x):
...     return ops.exp(x)
...
>>> def closure_fn(x, fn):
...     @ms_function(hash_args=fn)
...     def inner_fn(a):
...         return fn(a)
...     return inner_fn(x)
...
>>> inputs = Tensor(np.ones([10, 10, 10]).astype(np.float32))
>>> for i in range(10):
...     closure_fn(inputs, func)