# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tensor implementation."""
__all__ = ['Tensor']
import abc
import math
import numbers
import numpy as np
from mindspore.communication.management import get_group_size
from mindspore.common._utils import is_shape_unknown
from mindspore.common.seed import get_seed
from mindspore import context
from mindspore import log as logger
from mindspore.common import dtype as mstype
from mindspore.common.hook_handle import _TensorHookHandle
from mindspore.common._utils import get_slice_num
from mindspore.common._register_for_tensor import tensor_operator_registry
from mindspore._c_expression import Tensor as Tensor_
from mindspore import _checkparam as validator
from mindspore._checkparam import check_is_number, is_stub_tensor, check_hook_fn
from mindspore._check_jit_forbidden_api import jit_forbidden_register
from mindspore.common.symbol import Symbol
np_types = (np.int8, np.int16, np.int32, np.int64,
np.uint8, np.uint16, np.uint32, np.uint64, np.float16,
np.float32, np.float64, np.bool_, np.complex64, np.complex128)
def _check_input_data_type(input_data):
"""Check the type of input_data for Tensor"""
validator.check_value_type('input_data', input_data,
(Tensor_, Tensor, np.ndarray, np.str_, list, tuple, float, int, bool, complex),
'Tensor')
valid_dtypes = (np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64,
np.float16, np.float32, np.float64, np.bool_, np.str_, np.complex64, np.complex128)
if isinstance(input_data, np.ndarray) and input_data.dtype not in valid_dtypes and \
input_data.dtype.kind != 'U' and input_data.dtype.kind != 'S' and \
input_data.dtype.kind != 'T': # Support dtype np.str_ and npy_bfloat16
new_line = '\n'
for index, x in np.ndenumerate(input_data):
if np.array(x).dtype not in valid_dtypes:
raise TypeError(f"initializing tensor by numpy array failed, because the "
f"element type '{type(x)}' of array is not supported.\n"
f"The element index in array: {index}, numpy array: {input_data}.\n"
f"The supported element type of ndarray as follow: "
f"{new_line}{new_line.join(map(str, valid_dtypes))}")
raise TypeError(f"initializing tensor by numpy array failed, numpy array: {input_data}, "
f"data type: {input_data.dtype}.\nThe supported element type of ndarray "
f"as follow: {new_line}{new_line.join(map(str, valid_dtypes))}")
if isinstance(input_data, np.ndarray) and input_data.dtype.kind == "S" and \
input_data.shape and context.get_context("enable_ge"):
raise TypeError("For binary string input in GE mode, the shape of the data must be ()")
if isinstance(input_data, (tuple, list)) and np.array(input_data).dtype not in valid_dtypes:
raise TypeError(
f"For Tensor, the input_data is {input_data} that contain unsupported element.")
class _TensorMeta(type(Tensor_), abc.ABCMeta):
"""
Meta class for Tensor. Used internally.
"""
[docs]def tensor(input_data=None, dtype=None, shape=None, init=None, internal=False, const_arg=False):
"""
Create a new Tensor in Cell.construct() or function decorated by @jit.
In graph mode, MindSpore would create a new Tensor object at runtime dynamically,
based on the `dtype` argument.
Please refer to `Creating and Using Tensor
<https://www.mindspore.cn/docs/en/r2.3.1/note/static_graph_syntax_support.html#mindspore-user-defined-data-types>`_ .
The difference between it and the Tensor class is that it adds
`Annotation
<https://www.mindspore.cn/docs/en/r2.3.1/design/dynamic_graph_and_static_graph.html?#annotation-type>`_
which can prevent the generation of AnyType compared to the Tensor class.
The arguments and return values are the same as the Tensor class. Also see: :class:`mindspore.Tensor`.
internally to indicate the type of the Tensor currently being created,
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore as ms
>>> from mindspore import jit, tensor
>>> @jit
... def func(x):
... return tensor(x.asnumpy(), dtype=ms.float32)
>>> x = tensor([1, 2, 3])
>>> y = func(x)
>>> print(y)
[1. 2. 3.]
"""
return Tensor(input_data, dtype, shape, init, internal, const_arg) # @jit.typing: () -> tensor_type[{dtype}]
[docs]class Tensor(Tensor_, metaclass=_TensorMeta):
"""
Tensor is a data structure that stores an n-dimensional array.
Note:
If `init` interface is used to initialize `Tensor`, the `Tensor.init_data` API needs to be called to load the
actual data to `Tensor`.
Warning:
To convert dtype of a `Tensor`, it is recommended to use `Tensor.astype()` rather than
`Tensor(sourceTensor, dtype=newDtype)`.
Args:
input_data (Union[Tensor, float, int, bool, tuple, list, numpy.ndarray]): The data to be stored. It can be
another Tensor, Python number or NumPy ndarray. Default: ``None`` .
dtype (:class:`mindspore.dtype`): Used to indicate the data type of the output Tensor. The argument should
be defined in `mindspore.dtype`. If it is ``None`` , the data type of the output Tensor will be the same
as the `input_data`. Default: ``None`` .
shape (Union[tuple, list, int, :class:`mindspore.Symbol`]): Used to indicate the shape of the output Tensor.
If `input_data` is available, `shape` doesn't need to be set. If ``None`` or `Symbol` exists in `shape` ,
a tensor of dynamic shape is created, `input_data` doesn't need to be set; if only integers exist in
`shape`, a tensor of static shape is created, `input_data` or `init` must be set. Default: ``None`` .
init (Initializer): The information of init data.
`init` is used for delayed initialization in parallel mode, when using init, `dtype` and `shape` must be
set. Default: ``None`` .
internal (bool): Whether it is created by the framework.
``'True'`` means that the tensor is created by framework.
``'False'`` means that the tensor is created by user.
Default: ``False`` .
const_arg (bool): Whether the tensor is a constant when it is used for the argument of a network.
Default: ``False`` .
Outputs:
Tensor.
Note:
The default value ``None`` of `input_data` works as a placeholder,
it does not mean that we can create a NoneType
Tensor.
Tensor with `shape` contains 0 is not fully tested and supported.
Examples:
>>> import numpy as np
>>> import mindspore as ms
>>> from mindspore import Tensor
>>> from mindspore.common.initializer import One
>>> # initialize a tensor with numpy.ndarray
>>> t1 = Tensor(np.zeros([1, 2, 3]), ms.float32)
>>> print(t1)
[[[0. 0. 0.]
[0. 0. 0.]]]
>>> print(type(t1))
<class 'mindspore.common.tensor.Tensor'>
>>> print(t1.shape)
(1, 2, 3)
>>> print(t1.dtype)
Float32
>>>
>>> # initialize a tensor with a float scalar
>>> t2 = Tensor(0.1)
>>> print(t2)
0.1
>>> print(type(t2))
<class 'mindspore.common.tensor.Tensor'>
>>> print(t2.shape)
()
>>> print(t2.dtype)
Float32
>>>
>>> # initialize a tensor with a tuple
>>> t3 = Tensor((1, 2))
>>> print(t3)
[1 2]
>>> print(type(t3))
<class 'mindspore.common.tensor.Tensor'>
>>> print(t3.shape)
(2,)
>>> print(t3.dtype)
Int64
...
>>> # initialize a tensor with init
>>> t4 = Tensor(shape = (1, 3), dtype=ms.float32, init=One())
>>> print(t4)
[[1. 1. 1.]]
>>> print(type(t4))
<class 'mindspore.common.tensor.Tensor'>
>>> print(t4.shape)
(1, 3)
>>> print(t4.dtype)
Float32
"""
delta_seed = 0
def __init__(self, input_data=None, dtype=None, shape=None, init=None, internal=False, const_arg=False):
self.init_finished = False
if isinstance(input_data, (Tensor, Tensor_)) and dtype is not None:
logger.info("It is suggested to use 'Tensor.astype()' to convert the dtype of a Tensor.")
_cast = tensor_operator_registry.get("cast")
input_data = _cast(input_data, dtype)
if is_stub_tensor(input_data):
input_data = input_data.stub_sync()
if internal:
if input_data is not None:
Tensor_.__init__(self, input_data)
else:
if input_data is None and shape is None and init is None and dtype is not None:
validator.check_type_name('dtype', dtype, mstype.number_type +
(mstype.bool_, mstype.string), "Tensor")
Tensor_.__init__(self, dtype, [-2])
logger.warning(f"For 'Tensor', if 'dtype' is not None, 'input_data', 'shape' "
f"or 'init' must not be None.")
else:
# If input data is numpy number, convert it to np array
if isinstance(input_data, np_types):
input_data = np.array(input_data)
if shape is not None:
if isinstance(shape, numbers.Number):
shape = (shape,)
elif isinstance(shape, Symbol):
self.symbolic_shape = [shape]
shape = (None,)
elif isinstance(shape, (list, tuple)) and any(isinstance(s, Symbol) for s in shape):
self.symbolic_shape = [item.to_dict() if isinstance(item, Symbol) else item for item in shape]
shape_without_symbol = (None if isinstance(item, Symbol) else item for item in shape)
shape = list(shape_without_symbol) if isinstance(shape, list) else tuple(shape_without_symbol)
_check_tensor_input(input_data, dtype, shape, init)
# If input_data is tuple/list/numpy.ndarray, it's support in check_type method.
if (isinstance(shape, (list, tuple)) and None in shape) or init is not None:
shape = _check_tensor_dynamic_shape(dtype, shape, init)
Tensor_.__init__(self, dtype, shape)
else:
_check_input_data_type(input_data)
if dtype is not None:
validator.check_type_name('dtype', dtype, mstype.number_type +
(mstype.bool_, mstype.string), "Tensor")
else:
dtype = self._set_default_dtype(input_data, dtype)
if isinstance(input_data, np.ndarray) and (not input_data.flags['FORC']):
input_data = np.ascontiguousarray(input_data)
if dtype is not None:
Tensor_.__init__(self, input_data, dtype)
else:
Tensor_.__init__(self, input_data)
validator.check_value_type('const_arg', const_arg, bool, 'Tensor')
self.const_arg = const_arg
self.virtual_flag = False
self.init = init
self.init_finished = True
# if cur Tensor is a index value of another Tensor,
# parent_tensor_ set to another Tensor
# index_of_parent_ will set to the index
self.parent_tensor_ = None
self.index_of_parent_ = None
self.slice_num_of_persistent_data_ = None
self.slice_shape_of_persistent_data_ = None
# the auto gradient information
self._grad = None
self._grad_fn = None
self._requires_grad = False
self._retain_grad = False
@classmethod
def __subclasshook__(cls, sub):
"""
Subclass with stub_sync attr will be instance of Tensor
"""
if cls is Tensor:
if any("stub_sync" in s.__dict__ for s in sub.__mro__):
return True
return NotImplemented
@staticmethod
def _set_default_dtype(input_data, dtype):
"""Set tensor default dtype"""
if isinstance(input_data, (float, list, tuple)):
if np.array(input_data).dtype == np.float64:
return mstype.float32
if isinstance(input_data, (int, list, tuple)):
if np.array(input_data).dtype in (np.int32, np.int64):
return mstype.int64
return dtype
def __deepcopy__(self, memodict):
new_obj = Tensor(self)
new_obj.init = self.init
new_obj.virtual_flag = self.virtual_flag
new_obj.const_arg = self.const_arg
return new_obj
def __repr__(self):
if self.init_finished:
Tensor_.data_sync(self, True)
return Tensor_.__repr__(self)
return ''
def __eq__(self, other):
if not isinstance(other, (int, float, Tensor)):
return False
return tensor_operator_registry.get('__eq__')(self, other)
def __ne__(self, other):
if not isinstance(other, (int, float, Tensor)):
return True
return tensor_operator_registry.get('__ne__')(self, other)
def __hash__(self):
return hash(id(self))
def __neg__(self):
out = tensor_operator_registry.get('__neg__')(self)
return out
def __invert__(self):
out = tensor_operator_registry.get('__logical_not__')(self)
return out
def __round__(self):
out = tensor_operator_registry.get('round')(self)
return out
def __bool__(self):
data = self.asnumpy()
if data.shape == ():
return bool(data)
if data.shape == (1,):
return bool(data[0])
raise ValueError("The truth value of an array with more than one element is ambiguous.")
@staticmethod
def _convert_scalar_(data, func, message):
if data.shape == ():
return func(data)
if data.shape == (1,):
return func(data[0])
raise ValueError(message)
def __int__(self):
data = self.asnumpy()
return self._convert_scalar_(data, int, "Only one element tensors can be converted to Python scalars")
def __float__(self):
data = self.asnumpy()
return self._convert_scalar_(data, float, "Only one element tensors can be converted to Python scalars")
def __index__(self):
data = self.asnumpy()
if data.dtype not in ["int8", "int16", "int32", "int64", "bool"]:
raise ValueError("Only integer tensors of a single element can be converted to an index.")
return self._convert_scalar_(data, int,
"Only integer tensors of a single element can be converted to an index.")
def __pos__(self):
return self
def __abs__(self):
return tensor_operator_registry.get('abs')(self)
def __add__(self, other):
return tensor_operator_registry.get('__add__')(self, other)
def __and__(self, other):
if isinstance(other, (int, bool, float, Tensor)):
return tensor_operator_registry.get('bitwise_and')(self, other)
raise TypeError("Unsupported operand type(s) for &: 'Tensor' and '{}'".format(type(other)))
def __xor__(self, other):
if isinstance(other, (int, bool, float, Tensor)):
return tensor_operator_registry.get('bitwise_xor')(self, other)
raise TypeError("Unsupported operand type(s) for ^: 'Tensor' and '{}'".format(type(other)))
def __or__(self, other):
if isinstance(other, (int, bool, float, Tensor)):
return tensor_operator_registry.get('bitwise_or')(self, other)
raise TypeError("Unsupported operand type(s) for |: 'Tensor' and '{}'".format(type(other)))
def __radd__(self, other):
return self.__add__(other)
def __iadd__(self, other):
return self.__add__(other)
def __sub__(self, other):
return tensor_operator_registry.get('__sub__')(self, other)
def __rsub__(self, other):
return tensor_operator_registry.get('__sub__')(other, self)
def __isub__(self, other):
return self.__sub__(other)
def __mul__(self, other):
return tensor_operator_registry.get('__mul__')(self, other)
def __rmul__(self, other):
return self.__mul__(other)
def __imul__(self, other):
return self.__mul__(other)
def __matmul__(self, other):
return tensor_operator_registry.get('__matmul__')(self, other)
def __rmatmul__(self, other):
return tensor_operator_registry.get('__matmul__')(other, self)
def __imatmul__(self, other):
return self.__matmul__(other)
def __truediv__(self, other):
return tensor_operator_registry.get('__truediv__')(self, other)
def __rtruediv__(self, other):
return tensor_operator_registry.get('__truediv__')(other, self)
def __mod__(self, other):
return tensor_operator_registry.get('__mod__')(self, other)
def __rmod__(self, other):
return tensor_operator_registry.get('__mod__')(other, self)
def __imod__(self, other):
return self.__mod__(other)
def __pow__(self, other):
return tensor_operator_registry.get('__pow__')(self, other)
def __rpow__(self, other):
return tensor_operator_registry.get('__rpow__')(self, other)
def __floordiv__(self, other):
return tensor_operator_registry.get('__floordiv__')(self, other)
def __rfloordiv__(self, other):
return tensor_operator_registry.get('__floordiv__')(other, self)
def __ifloordiv__(self, other):
return self.__floordiv__(other)
def __lt__(self, other):
out = tensor_operator_registry.get('__lt__')(self, other)
return out
def __le__(self, other):
out = tensor_operator_registry.get('__le__')(self, other)
return out
def __getitem__(self, index):
out = tensor_operator_registry.get('__getitem__')(self, index)
if out is not self:
out.parent_tensor_ = self
out.index_of_parent_ = index
return out
def __setitem__(self, index, value):
out = tensor_operator_registry.get('__setitem__')(self, index, value)
if isinstance(out, tuple):
if self.parent_tensor_ is not None and self.index_of_parent_ is not None:
self.parent_tensor_.__setitem__(self.index_of_parent_, out[0])
return self
return self
self.assign_value(out)
if self.parent_tensor_ is not None and self.index_of_parent_ is not None:
self.parent_tensor_.__setitem__(self.index_of_parent_, self)
return self
def __gt__(self, other):
out = tensor_operator_registry.get('__gt__')(self, other)
return out
def __ge__(self, other):
out = tensor_operator_registry.get('__ge__')(self, other)
return out
def __len__(self):
out = tensor_operator_registry.get('shape')(self)
if out:
return out[0]
raise TypeError("Not support len of a 0-D tensor")
def __str__(self):
if self.dtype == mstype.type_none:
return "Unknown Tensor type!"
return str(self.asnumpy())
def __getstate__(self):
state = self.__dict__.copy()
state["value"] = Tensor_.__getstate__(self)
return state
def __setstate__(self, state):
value = state.pop("value")
Tensor_.__setstate__(self, value)
self.__dict__.update(state)
@property
def shape(self):
"""
For details, please refer to :func:`mindspore.ops.shape`.
"""
return self._shape
@shape.setter
def shape(self, shape_value):
r"""
Set the shape value.
"""
self._shape = shape_value
@property
def dtype(self):
"""Return the dtype of the tensor (:class:`mindspore.dtype`)."""
return self._dtype
@property
def size(self):
"""
For details, please refer to :func:`mindspore.ops.size`.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
>>> output = x.size
>>> print(output)
4
"""
return self._size
@property
def ndim(self):
"""
Return the number of tensor dimensions.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
>>> output = x.ndim
>>> print(output)
2
"""
return len(self._shape)
@property
def grad(self):
r"""
Get the gradient value.
"""
return self._grad
@grad.setter
def grad(self, grad):
r"""
Set the gradient value.
"""
self._grad = grad
@property
def grad_fn(self):
r"""
The function for backward.
"""
return self._grad_fn
@grad_fn.setter
def grad_fn(self, grad_fn):
r"""
Set the function for backward.
"""
self._grad_fn = grad_fn
@property
def is_leaf(self):
r"""
Whether the stub tensor is leaf.
They will be a leaf if they have requires_grad and requires_grad is False,
Or they were created by user.
"""
return self._requires_grad is False or self._grad_fn is None
@property
def requires_grad(self):
r"""
Whether the stub tensor need requires grad.
"""
return self._requires_grad
@requires_grad.setter
def requires_grad(self, requires_grad):
r"""
Mark the stub tensor whether need requires gradient.
"""
self._requires_grad = requires_grad
def retain_grad(self):
r"""
Enable the stub tensor which is not non-leaf to have the grad during backward().
"""
if not self._requires_grad:
RuntimeError("can't retain_grad on Tensor that has requires_grad = False.")
self._retain_grad = self._grad_fn is not None
@property
def retains_grad(self):
r"""
Is True if the stub tensor is non-leaf and its grad is enabled to be populated during backward().
"""
return self._retain_grad
def backward(self, grad=None):
r"""
Calculate the gradient.
"""
if grad is None:
grad = Tensor(np.ones(self.shape), self.dtype)
if self._grad_fn is not None:
self._grad_fn.apply(grad)
elif self._requires_grad:
self._grad = grad
@property
def H(self):
"""
Returns a view of a matrix (2-D tensor) conjugated and transposed.
x.H is equivalent to `mindspore.Tensor.swapaxes(0, 1).conj()` for complex matrices and
`mindspore.Tensor.swapaxes(0, 1)` for real matrices.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
>>> output = x.H
>>> print(output)
[[1 3]
[2 4]]
"""
if self.ndim != 2:
raise ValueError(f"For tensor.H only support 2-D Tensor, but got {self.ndim}-D.")
output = self.swapaxes(0, 1)
if self.dtype in (mstype.complex64, mstype.complex128):
return output.conj()
return output
@property
def has_init(self):
"""
Whether tensor is initialized.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
>>> output = x.has_init
>>> print(output)
False
"""
return self.init is not None
@property
def itemsize(self):
"""
Return the length of one tensor element in bytes.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
>>> output = x.itemsize
>>> print(output)
8
"""
return self._itemsize
@property
def strides(self):
"""
Return the tuple of bytes to step in each dimension when traversing a tensor.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
>>> output = x.strides
>>> print(output)
(16, 8)
"""
return self._strides
@property
def nbytes(self):
"""
Return the total number of bytes taken by the tensor.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
>>> output = x.nbytes
>>> print(output)
32
"""
return self._nbytes
@property
def T(self):
"""
Return the transposed tensor.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
>>> output = x.T
>>> print(output)
[[1 3]
[2 4]]
"""
if self.ndim <= 1:
return self
return self.transpose()
[docs] @staticmethod
def from_numpy(array):
"""
Convert numpy array to Tensor.
If the data is not C contiguous, the data will be copied to C contiguous to construct the tensor.
Otherwise, The tensor will be constructed using this numpy array without copy.
Args:
array (numpy.array): The input array.
Returns:
Tensor, has the same data type as input array.
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = np.array([1, 2])
>>> output = Tensor.from_numpy(x)
>>> print(output)
[1 2]
"""
if isinstance(array, np.ndarray) and not array.flags['C_CONTIGUOUS']:
array = np.ascontiguousarray(array)
return Tensor(Tensor_.from_numpy(array))
[docs] def ndimension(self):
r"""
Alias for :func:`mindspore.Tensor.ndim`.
"""
return len(self._shape)
[docs] @jit_forbidden_register
def set_const_arg(self, const_arg=True):
"""
Specify whether the tensor is a constant when it is used for the argument of a network.
Args:
const_arg (bool): Whether the tensor is a constant when it is used for the argument of a network.
Default: ``True`` .
Returns:
Tensor, has been specified whether to be a const network argument.
Raises:
TypeError: If `const_arg` is not a bool.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.array([[1,2,3],[4,5,6]], dtype=np.float32))
>>> x.set_const_arg(True)
"""
validator.check_value_type('const_arg', const_arg, bool, 'set_const_arg')
self.const_arg = const_arg
return self
[docs] def arccosh(self):
r"""
For details, please refer to :func:`mindspore.ops.arccosh`.
"""
return tensor_operator_registry.get('acosh')(self)
[docs] def arcsin(self):
r"""
For details, please refer to :func:`mindspore.ops.arcsin`.
"""
return tensor_operator_registry.get('asin')(self)
[docs] def arctan(self):
r"""
For details, please refer to :func:`mindspore.ops.arctan`.
"""
return tensor_operator_registry.get('atan')(self)
[docs] def arctan2(self, other):
r"""
For details, please refer to :func:`mindspore.ops.arctan2`.
"""
return tensor_operator_registry.get('atan2')(self, other)
[docs] def cauchy(self, median=0.0, sigma=1.0):
r"""
Fills the tensor with numbers drawn from the Cauchy distribution. It is
defined as follows:
.. math::
f(x)= \frac{1}{\pi} \frac{\sigma}{(x-median)^2 +\sigma^2}
.. warning::
This is an experimental API that is subject to change or deletion.
Args:
median (float, optional): the location parameter, specifying the location
of the peak of the distribution. Default: 0.0.
sigma (float, optional): the scale parameter which specifies the half-width
at half-maximum. Default: 1.0.
Returns:
Tensor. A Tensor with the same type and shape of input.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> import mindspore
>>> import numpy as np
>>> x = mindspore.Tensor(np.zeros((1, 2)), dtype=mindspore.float32)
>>> x.cauchy()
Tensor(shape=[1, 2], dtype=Float32, value=
[[8.79836142e-01, 9.37541723e-01]])
"""
out = tensor_operator_registry.get('cauchy')(list(self.shape), median, sigma)()
return out.astype(self.dtype)
[docs] def log_normal(self, mean=1.0, std=2.0):
r"""
Fills the elements of the input tensor with log normal values initialized by
given mean and std:
.. math::
\text{f}(x;1.0,2.0)=\frac{1}{x\delta \sqrt[]{2\pi} }e^{-\frac{(\ln x-\mu )^2}{2\delta ^2} }
where :math:`\mu`, :math:`\delta` is mean and standard deviation of lognormal distribution respectively.
.. warning::
This is an experimental API that is subject to change or deletion.
Args:
mean (float, optional): the mean of normal distribution. With float data type.
Default: 1.0.
std (float, optional): the std of normal distribution. With float data type.
Default: 2.0.
Returns:
Tensor. A Tensor with the same type and shape of input.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore
>>> import numpy as np
>>> x = mindspore.Tensor(np.array([[1, 2], [3, 4]]), dtype=mindspore.float32)
>>> output = x.log_normal()
>>> print(output)
[[1.2788825 2.3305743]
[14.944194 0.16303174]]
"""
return tensor_operator_registry.get('log_normal')(mean, std)(self)
[docs] @jit_forbidden_register
def assign_value(self, value):
"""
Assign another tensor value to this tensor.
Args:
value (Tensor): Tensor for assignment.
Returns:
Tensor, Tensor that's been assigned.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor([1, 2, 3, 4])
>>> y = Tensor(np.array([[1, 2], [3, 4]]))
>>> output = x.assign_value(y)
>>> print(x)
[[1 2]
[3 4]]
"""
if is_stub_tensor(value):
value = value.stub_sync()
self.assign_value_cpp(value)
return self
[docs] def bincount(self, weights=None, minlength=0):
r"""
For details, please refer to :func:`mindspore.ops.bincount`.
"""
return tensor_operator_registry.get('bincount')(self, weights, minlength)
[docs] def chunk(self, chunks, axis=0):
r"""
For details, please refer to :func:`mindspore.ops.chunk`.
"""
return tensor_operator_registry.get('chunk')(self, chunks, axis)
[docs] def item(self, index=None):
"""
Get the item at the specified index of the tensor.
Args:
index (Union[None, int, tuple(int)]): The index in Tensor. Default: ``None``.
Returns:
A scalar, type is defined by the dtype of the Tensor.
Raises:
ValueError: If the length of the `index` is not equal to self.ndim.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore as ms
>>> from mindspore import Tensor
>>> x = Tensor([[1, 2, 3], [4, 5, 6]], ms.float32)
>>> print(x.item((0, 1)))
2.0
>>> x = Tensor(1.2, ms.float32)
>>> print(x.item())
1.2
"""
if index is not None:
output = self.asnumpy().item(index)
else:
output = self.asnumpy().item()
return output
[docs] def itemset(self, *args):
r"""
Insert scalar into a tensor (scalar is cast to tensor's dtype, if possible).
There must be at least 1 argument, and define the last argument as item.
Then, tensor.itemset(\*args) is equivalent to :math:`Tensor[args] = item`.
Args:
args (Union[(numbers.Number), (int/tuple(int), numbers.Number)]): The arguments that
specify the index and value. If `args` contain one argument (a scalar),
it is only used in case tensor is of size 1. If `args` contain two
arguments, the last argument is the value to be set and must be a
scalar, the first argument specifies a single tensor element location.
It is either an int or a tuple.
Returns:
A new tensor that doesn't affect the original tensor, with value set by :math:`Tensor[args] = item`.
Raises:
ValueError: If the length of the first argument is not equal to self.ndim.
IndexError: If only one argument is provided, and the original Tensor is not scalar.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.array([[1,2,3],[4,5,6]], dtype=np.float32))
>>> print(x.itemset((0,1), 4))
[[1. 4. 3.]
[4. 5. 6.]]
>>> print(x)
[[1. 2. 3.]
[4. 5. 6.]]
"""
output = tensor_operator_registry.get('itemset')(self, *args)
return output
def get_bytes(self):
r"""
Get raw data of tensor with type of bytes.
Supported Platforms:
``CPU`` ``GPU`` ``Ascend``
Returns:
Bytes of tensor.
Examples:
>>> import mindspore as ms
>>> from mindspore import Tensor
>>> x = ms.Tensor([1, 2, 3], ms.int16)
>>> print(x.get_bytes())
b'\x01\x00\x02\x00\x03\x00'
"""
return Tensor_.get_bytes(self)
[docs] def asnumpy(self):
"""
Convert tensor to numpy array. Returns self tensor as a NumPy ndarray. This tensor and the returned ndarray
share the same underlying storage. Changes to self tensor will be reflected in the ndarray.
Returns:
A numpy ndarray which shares the same underlying storage with the tensor.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([1, 2], dtype=np.float32))
>>> y = x.asnumpy()
>>> y[0] = 11
>>> print(x)
[11. 2.]
>>> print(y)
[11. 2.]
"""
if self.has_init:
self.init_data()
return Tensor_.asnumpy(self)
[docs] def numpy(self):
"""
Alias for :func:`mindspore.Tensor.asnumpy`.
"""
return self.asnumpy()
def is_persistent_data(self):
"""
Check if size of tensor is huge, and need save data to persistent storage.
If size of tensor is bigger then MS_EMBEDDING_REMOTE_CACHE_MEMORY_SIZE, it will
use persistent storage to save tensor data. And will spilt data to some slice.
Returns:
True or False
"""
return Tensor_.is_persistent_data(self)
def asnumpy_of_slice_persistent_data(self, param_key, slice_index):
"""
Convert a slice of tensor data to numpy array. A slice is part of tensor data.
Returns as a NumPy ndarray. This slice tensor data and the returned ndarray
share the same underlying storage. Changes to self tensor will be reflected in the ndarray.
Returns:
A numpy ndarray which shares the same underlying storage with the slice of tensor data.
"""
return Tensor_.asnumpy_of_slice_persistent_data(self, param_key, slice_index)
def slice_num_of_persistent_data(self):
"""
Get slice num of a tensor which use persistent storage.
Returns:
Num of slice.
"""
return self.slice_num_of_persistent_data_
[docs] def slice_scatter(self, src, axis=0, start=None, end=None, step=1):
"""
For details, please refer to :func:`mindspore.ops.slice_scatter`.
"""
return tensor_operator_registry.get('slice_scatter')(self, src, axis, start, end, step)
[docs] def select_scatter(self, src, axis, index):
"""
For details, please refer to :func:`mindspore.ops.select_scatter`.
"""
return tensor_operator_registry.get('select_scatter')(self, src, axis, index)
[docs] def histc(self, bins=100, min=0., max=0.):
"""
For details, please refer to :func:`mindspore.ops.histc`.
"""
validator.check_value_type('min', min, (int, float,), 'Tensor.histc')
validator.check_value_type('max', max, (int, float,), 'Tensor.histc')
return tensor_operator_registry.get('histc')(self, bins, float(min), float(max))
[docs] def geqrf(self):
"""
For details, please refer to :func:`mindspore.ops.geqrf`.
"""
return tensor_operator_registry.get('geqrf')(self)
def slice_shape_of_persistent_data(self):
"""
Get slice shape of tensor after cut to slice size.
Returns:
The slice shape of tensor.
"""
return self.slice_shape_of_persistent_data_
def value(self):
"""
Get the value of the tensor or the parameter.
Returns:
The value of the tensor or the parameter.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([1, 2], dtype=np.float32))
>>> x_value = x.value()
>>> print(x_value)
[1. 2.]
"""
return self
[docs] def contiguous(self):
"""
Converts a Tensor into a continuous-memory Tensor that contains the same data as the original Tensor.
Returns:
A contiguous in memory tensor containing the same data as self tensor.
Examples:
>>> import mindspore as ms
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> x = Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32)
>>> y = ops.transpose(x, (1, 0))
>>> z = y.contiguous()
>>> print(z.is_contiguous())
True
"""
return tensor_operator_registry.get('contiguous')(self)
[docs] def is_contiguous(self):
"""
Determines whether the memory of tensor is contiguous.
Returns:
Bool, True if tensor memory is contiguous, False otherwise.
Examples:
>>> import mindspore as ms
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> x = Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32)
>>> y = ops.transpose(x, (1, 0))
>>> print(y.is_contiguous())
False
"""
return Tensor_.is_contiguous(self)
[docs] def stride(self, dim=None):
"""
The stride to jump from one element to the next in the input dim.
When no parameters are passed in, a list of stride for all dimensions is returned.
Args:
dim (int): The dim of stride from one element to the next.
Returns:
Int, the stride of tensor.
Raises:
TypeError: `dim` is not an int.
Examples:
>>> import mindspore as ms
>>> x = ms.Tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], dtype=ms.float32)
>>> x.stride()
[5, 1]
"""
stride = Tensor_.stride(self)
if dim is None:
return stride
return stride[dim]
[docs] def storage_offset(self):
"""
Tensor's offset in the underlying storage in terms of the number of storage elements.
Returns:
int, tensor's offset in the underlying storage in terms of number of storage elements.
Examples:
>>> import mindspore as ms
>>> x = ms.Tensor([1, 2, 3, 4, 5], dtype=ms.float32)
>>> ret = x.storage_offset()
>>> print(ret)
0
"""
return Tensor_.storage_offset(self)
[docs] def register_hook(self, hook_fn):
"""
Registers a backward hook for tensor.
Note:
- The `register_backward_hook(hook_fn)` does not work in graph mode or functions decorated with 'jit'.
- The 'hook_fn' must be defined as the following code. `grad` is the gradient passed to the tensor,
which may be modified by returning a new output gradient.
- The 'hook_fn' should have the following signature:
hook_fn(grad) -> New output gradient, but can not return None or not set return value.
Args:
hook_fn (function): Python function. Tensor backward hook function.
Returns:
A handle corresponding to the `hook_fn` . The handle can be used to remove the added `hook_fn` by calling
`handle.remove()` .
Raises:
TypeError: If the `hook_fn` is not a function of python.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore as ms
>>> from mindspore import Tensor
>>> ms.set_context(mode=ms.PYNATIVE_MODE)
>>> def hook_fn(grad):
... return grad * 2
...
>>> def hook_test(x, y):
... z = x * y
... z.register_hook(hook_fn)
... z = z * y
... return z
...
>>> ms_grad = ms.grad(hook_test, grad_position=(0,1))
>>> output = ms_grad(Tensor(1, ms.float32), Tensor(2, ms.float32))
>>> print(output)
(Tensor(shape=[], dtype=Float32, value=8), Tensor(shape=[], dtype=Float32, value=6))
"""
if not check_hook_fn("register_hook", hook_fn):
return _TensorHookHandle()
handle = _TensorHookHandle()
handle.id = Tensor_.register_hook(self, hook_fn)
return handle
[docs] def flush_from_cache(self):
"""
Flush cache data to host if tensor is cache enable.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([1, 2], dtype=np.float32))
>>> y = x.flush_from_cache()
>>> print(y)
None
"""
Tensor_._flush_from_cache(self)
[docs] def addcdiv(self, tensor1, tensor2, value=1):
r"""
For details, please refer to :func:`mindspore.ops.addcdiv`.
"""
return tensor_operator_registry.get('addcdiv')(self, tensor1, tensor2, value)
[docs] def addcmul(self, tensor1, tensor2, value=1):
r"""
For details, please refer to :func:`mindspore.ops.addcmul`.
"""
return tensor_operator_registry.get('addcmul')(self, tensor1, tensor2, value)
[docs] def add(self, other):
r"""
For details, please refer to :func:`mindspore.ops.add`.
"""
return tensor_operator_registry.get('add')(self, other)
[docs] def subtract(self, other, *, alpha=1):
r"""
For details, please refer to :func:`mindspore.ops.subtract`.
"""
return tensor_operator_registry.get('sub')(self, alpha * other)
[docs] def true_divide(self, value):
r"""
Alias for Tensor.div() with :math:`rounding\_mode=None`.
For details, please refer to :func:`mindspore.ops.div`.
"""
return tensor_operator_registry.get('div')(self, value, rounding_mode=None)
[docs] def triu(self, diagonal=0):
r"""
For details, please refer to :func:`mindspore.ops.triu`.
.. warning::
This is an experimental API that is subject to change or deletion.
"""
validator.check_value_type('diagonal', diagonal, [int], 'triu')
return tensor_operator_registry.get('triu')(self, diagonal)
[docs] def addbmm(self, batch1, batch2, *, beta=1, alpha=1):
r"""
For details, please refer to :func:`mindspore.ops.addbmm`.
"""
return tensor_operator_registry.get('addbmm')(self, batch1, batch2, beta=beta, alpha=alpha)
[docs] def addmm(self, mat1, mat2, *, beta=1, alpha=1):
r"""
For details, please refer to :func:`mindspore.ops.addmm`.
"""
return tensor_operator_registry.get('addmm')(self, mat1, mat2, beta=beta, alpha=alpha)
[docs] def addr(self, vec1, vec2, beta=1, alpha=1):
r"""
For details, please refer to :func:`mindspore.ops.addr`.
"""
return tensor_operator_registry.get('addr')(self, vec1, vec2, beta=beta, alpha=alpha)
[docs] def adjoint(self):
r"""
For details, please refer to :func:`mindspore.ops.adjoint`.
"""
return tensor_operator_registry.get('adjoint')(self)
[docs] def all(self, axis=None, keep_dims=False):
r"""
For details, please refer to :func:`mindspore.ops.all`.
"""
return tensor_operator_registry.get('all')(self, axis, keep_dims)
[docs] def angle(self):
r"""
For details, please refer to :func:`mindspore.ops.angle`.
"""
return tensor_operator_registry.get('angle')(self)
[docs] def any(self, axis=None, keep_dims=False):
r"""
For details, please refer to :func:`mindspore.ops.any`.
"""
if axis is None:
axis = ()
return tensor_operator_registry.get('any')(self, axis, keep_dims)
[docs] def atan2(self, other):
r"""
For details, please refer to :func:`mindspore.ops.atan2`.
"""
return tensor_operator_registry.get('atan2')(self, other)
[docs] def baddbmm(self, batch1, batch2, beta=1, alpha=1):
r"""
For details, please refer to :func:`mindspore.ops.baddbmm`.
"""
return tensor_operator_registry.get('baddbmm')(self, batch1, batch2, beta=beta, alpha=alpha)
[docs] def view(self, *shape):
"""
Reshape the tensor according to the input shape. It's the same as :func:`mindspore.Tensor.reshape`,
implemented by the underlying reshape operator.
Args:
shape (Union[tuple(int), int]): Dimension of the output tensor.
Returns:
Tensor, which dimension is the input shape's value.
Examples:
>>> from mindspore import Tensor
>>> import numpy as np
>>> a = Tensor(np.array([[1, 2, 3], [2, 3, 4]], dtype=np.float32))
>>> output = a.view((3, 2))
>>> print(output)
[[1. 2.]
[3. 2.]
[3. 4.]]
"""
if not shape:
raise ValueError("The shape variable should not be empty")
if isinstance(shape[0], tuple):
if len(shape) != 1:
raise ValueError(f"Only one tuple is needed, but got {shape}")
shape = shape[0]
return tensor_operator_registry.get('reshape')(self, shape)
[docs] def view_as(self, other):
r"""
View self Tensor as the same shape as `other` .
Args:
other(Tensor): The returned Tensor has the same shape as `other`.
Returns:
Tensor, has the same shape as `other`.
Raises:
TypeError: If `other` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> from mindspore import Tensor
>>> from mindspore import dtype as mstype
>>> a = Tensor([[1, 2, 3], [2, 3, 4]], mstype.float32)
>>> b = Tensor([1, 1, 1, 1, 1, 1], mstype.float32)
>>> output = a.view_as(b)
>>> print(output)
[1. 2. 3. 2. 3. 4.]
"""
if not isinstance(other, (Tensor, Tensor_)):
raise TypeError(f"For view_as, the input other must be a Tensor, but got {type(other)}")
return self.view(other.shape)
[docs] def t(self):
r"""
For details, please refer to :func:`mindspore.ops.t`.
"""
return tensor_operator_registry.get("t")(self)
[docs] def bitwise_and(self, other):
"""
For details, please refer to :func:`mindspore.ops.bitwise_and`.
"""
return tensor_operator_registry.get('bitwise_and')(self, other)
[docs] def bitwise_or(self, other):
"""
For details, please refer to :func:`mindspore.ops.bitwise_or`.
"""
return tensor_operator_registry.get('bitwise_or')(self, other)
[docs] def bitwise_xor(self, other):
"""
For details, please refer to :func:`mindspore.ops.bitwise_xor`.
"""
return tensor_operator_registry.get('bitwise_xor')(self, other)
[docs] def bitwise_left_shift(self, other):
"""
For details, please refer to :func:`mindspore.ops.bitwise_left_shift`.
"""
return tensor_operator_registry.get('bitwise_left_shift')(self, other)
[docs] def bitwise_right_shift(self, other):
"""
For details, please refer to :func:`mindspore.ops.bitwise_right_shift`.
"""
_cast = tensor_operator_registry.get('cast')
other = _cast(other, self.dtype)
return tensor_operator_registry.get('bitwise_right_shift')(self, other)
[docs] def scatter(self, axis, index, src):
"""
For details, please refer to :func:`mindspore.ops.scatter`.
"""
return tensor_operator_registry.get('scatter')(self, axis, index, src)
[docs] def scatter_mul(self, indices, updates):
"""
For details, please refer to :func:`mindspore.ops.scatter_mul`.
"""
return tensor_operator_registry.get('tensor_scatter_mul')(self, indices, updates)
[docs] def scatter_div(self, indices, updates):
"""
For details, please refer to :func:`mindspore.ops.scatter_div`.
"""
return tensor_operator_registry.get('tensor_scatter_div')(self, indices, updates)
[docs] def ger(self, vec2):
"""
For details, please refer to :func:`mindspore.ops.ger`.
"""
return tensor_operator_registry.get('ger')(self, vec2)
[docs] def gt(self, x):
"""
For details, please refer to :func:`mindspore.ops.gt`.
"""
return tensor_operator_registry.get('gt')(self, x)
[docs] def ge(self, x):
"""
For details, please refer to :func:`mindspore.ops.ge`.
"""
return tensor_operator_registry.get('ge')(self, x)
[docs] def broadcast_to(self, shape):
"""
For details, please refer to :func:`mindspore.ops.broadcast_to`.
"""
return tensor_operator_registry.get('broadcast_to')(self, shape)
[docs] def expand_as(self, x):
"""
Expand the dimension of target tensor to the dimension of input tensor.
Args:
x (Tensor): The input tensor. The shape of the input tensor must obey
the broadcasting rule.
Returns:
Tensor, has the same dimension as input tensor.
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore import dtype as mstype
>>> x = Tensor([1, 2, 3], dtype=mstype.float32)
>>> y = Tensor(np.ones((2, 3)), dtype=mstype.float32)
>>> output = x.expand_as(y)
>>> print(output)
[[1. 2. 3.]
[1. 2. 3.]]
"""
return tensor_operator_registry.get('broadcast_to')(self, x.shape)
[docs] def exp(self):
"""
For details, please refer to :func:`mindspore.ops.exp`.
"""
return tensor_operator_registry.get('exp')(self)
[docs] def real(self):
r"""
For details, please refer to :func:`mindspore.ops.real`.
"""
return tensor_operator_registry.get('real')(self)
[docs] def rsqrt(self):
r"""
For details, please refer to :func:`mindspore.ops.rsqrt`.
"""
return tensor_operator_registry.get('rsqrt')(self)
[docs] def reciprocal(self):
r"""
For details, please refer to :func:`mindspore.ops.reciprocal`.
"""
return tensor_operator_registry.get('reciprocal')(self)
[docs] def sqrt(self):
"""
For details, please refer to :func:`mindspore.ops.sqrt`.
"""
return tensor_operator_registry.get('sqrt')(self)
[docs] def square(self):
"""
For details, please refer to :func:`mindspore.ops.square`.
"""
return tensor_operator_registry.get('square')(self)
[docs] def sub(self, y):
r"""
For details, please refer to :func:`mindspore.ops.sub`.
"""
return tensor_operator_registry.get('sub')(self, y)
[docs] def tan(self):
"""
For details, please refer to :func:`mindspore.ops.tan`.
"""
return tensor_operator_registry.get('tan')(self)
[docs] def tanh(self):
r"""
For details, please refer to :func:`mindspore.ops.tanh`.
"""
return tensor_operator_registry.get('tanh')(self)
[docs] def cosh(self):
r"""
For details, please refer to :func:`mindspore.ops.cosh`.
"""
return tensor_operator_registry.get('cosh')(self)
[docs] def acos(self):
r"""
For details, please refer to :func:`mindspore.ops.acos`.
"""
return tensor_operator_registry.get('acos')(self)
[docs] def arccos(self):
r"""
Alias for :func:`mindspore.Tensor.acos`.
"""
return self.acos()
[docs] def cos(self):
r"""
For details, please refer to :func:`mindspore.ops.cos`.
"""
return tensor_operator_registry.get('cos')(self)
[docs] def cov(self, *, correction=1, fweights=None, aweights=None):
r"""
For details, please refer to :func:`mindspore.ops.cov`.
"""
return tensor_operator_registry.get('cov')(self, correction=correction, fweights=fweights, aweights=aweights)
[docs] def acosh(self):
"""
For details, please refer to :func:`mindspore.ops.acosh`.
"""
return tensor_operator_registry.get('acosh')(self)
[docs] def asin(self):
r"""
For details, please refer to :func:`mindspore.ops.asin`.
"""
return tensor_operator_registry.get('asin')(self)
[docs] def abs(self):
"""
For details, please refer to :func:`mindspore.ops.abs`.
"""
return tensor_operator_registry.get('abs')(self)
[docs] def absolute(self):
"""
Alias for :func:`mindspore.Tensor.abs`.
"""
return self.abs()
[docs] def ceil(self):
"""
For details, please refer to :func:`mindspore.ops.ceil`.
"""
return tensor_operator_registry.get('ceil')(self)
[docs] def floor(self):
"""
For details, please refer to :func:`mindspore.ops.floor`.
"""
return tensor_operator_registry.get('floor')(self)
[docs] def floor_divide(self, other):
"""
For details, please refer to :func:`mindspore.ops.floor_divide`.
.. warning::
This is an experimental API that is subject to change or deletion.
"""
return tensor_operator_registry.get('floor_divide')(self, other)
[docs] def lerp(self, end, weight):
"""
For details, please refer to :func:`mindspore.ops.lerp`.
"""
return tensor_operator_registry.get('lerp')(self, end, weight)
[docs] def negative(self):
r"""
For details, please refer to :func:`mindspore.ops.negative`.
"""
return tensor_operator_registry.get("negative")(self)
# pylint: disable=redefined-builtin
[docs] def norm(self, ord=None, dim=None, keepdim=False, *, dtype=None):
"""
For details, please refer to :func:`mindspore.ops.norm`.
"""
return tensor_operator_registry.get('norm')(self, ord, dim, keepdim, dtype=dtype)
[docs] def renorm(self, p, axis, maxnorm):
"""
For details, please refer to :func:`mindspore.ops.renorm`.
"""
return tensor_operator_registry.get("renorm")(self, p, axis, maxnorm)
[docs] def approximate_equal(self, other, tolerance=1e-5):
r"""
For details, please refer to :func:`mindspore.ops.approximate_equal`.
"""
validator.check_isinstance("x", self, Tensor)
validator.check_isinstance("y", other, Tensor)
validator.check_isinstance("tolerance", tolerance, float)
input_x = self.copy() if self.dtype == mstype.float32 else self.astype(mstype.float16)
input_y = other.copy() if other.dtype == mstype.float32 else other.astype(mstype.float16)
return tensor_operator_registry.get('__lt__')(tensor_operator_registry.get('abs')(
tensor_operator_registry.get('__sub__')(input_x, input_y)
), tolerance)
[docs] def log1p(self):
r"""
For details, please refer to :func:`mindspore.ops.log1p`.
"""
return tensor_operator_registry.get('log1p')(self)
[docs] def logit(self, eps=None):
r"""
For details, please refer to :func:`mindspore.ops.logit`.
"""
if eps is None:
eps = -1.0
validator.check_value_type('eps', eps, (float,), 'Tensor.logit')
return tensor_operator_registry.get('logit')(self, eps)
[docs] def logaddexp(self, other):
r"""
For details, please refer to :func:`mindspore.ops.logaddexp`.
"""
return tensor_operator_registry.get('logaddexp')(self, other)
[docs] def logaddexp2(self, other):
r"""
For details, please refer to :func:`mindspore.ops.logaddexp2`.
"""
return tensor_operator_registry.get('logaddexp2')(self, other)
[docs] def logcumsumexp(self, axis):
r"""
For details, please refer to :func:`mindspore.ops.logcumsumexp`.
.. warning::
This is an experimental API that is subject to change or deletion.
"""
return tensor_operator_registry.get('logcumsumexp')(self, axis)
[docs] def logsumexp(self, axis, keepdims=False):
r"""
For details, please refer to :func:`mindspore.ops.logsumexp`.
"""
return tensor_operator_registry.get('logsumexp')(self, axis, keepdims)
[docs] def logdet(self):
r"""
For details, please refer to :func:`mindspore.ops.logdet`.
"""
return tensor_operator_registry.get('logdet')(self)
[docs] def i0(self):
r"""
For details, please refer to :func:`mindspore.ops.i0`.
"""
return tensor_operator_registry.get('i0')(self)
[docs] def isclose(self, x2, rtol=1e-05, atol=1e-08, equal_nan=False):
"""
For details, please refer to :func:`mindspore.ops.isclose`.
"""
return tensor_operator_registry.get('isclose')(self, x2, rtol, atol, equal_nan)
[docs] def isneginf(self):
r"""
For details, please refer to :func:`mindspore.ops.isneginf`.
"""
return tensor_operator_registry.get('isneginf')(self)
[docs] def isposinf(self):
r"""
For details, please refer to :func:`mindspore.ops.isposinf`.
"""
return tensor_operator_registry.get('isposinf')(self)
[docs] def isreal(self):
r"""
For details, please refer to :func:`mindspore.ops.isreal`.
"""
return tensor_operator_registry.get('isreal')(self)
[docs] def isfinite(self):
r"""
For details, please refer to :func:`mindspore.ops.isfinite`.
"""
return tensor_operator_registry.get('isfinite')(self)
[docs] def is_complex(self):
r"""
For details, please refer to :func:`mindspore.ops.is_complex`.
"""
return tensor_operator_registry.get('is_complex')(self)
[docs] def inv(self):
r"""
For details, please refer to :func:`mindspore.ops.inv`.
"""
return tensor_operator_registry.get('inv')(self)
[docs] def inverse(self):
r"""
For details, please refer to :func:`mindspore.ops.inverse`.
"""
return tensor_operator_registry.get('inverse')(self)
[docs] def invert(self):
r"""
For details, please refer to :func:`mindspore.ops.invert`.
"""
return tensor_operator_registry.get('invert')(self)
[docs] def pow(self, exponent):
r"""
For details, please refer to :func:`mindspore.ops.pow`.
"""
return tensor_operator_registry.get('pow')(self, exponent)
[docs] def log(self):
"""
For details, please refer to :func:`mindspore.ops.log`.
"""
return tensor_operator_registry.get('log')(self)
[docs] def log10(self):
r"""
For details, please refer to :func:`mindspore.ops.log10`.
"""
return tensor_operator_registry.get('log10')(self)
[docs] def log2(self):
r"""
For details, please refer to :func:`mindspore.ops.log2`.
"""
return tensor_operator_registry.get('log2')(self)
[docs] def mean(self, axis=None, keep_dims=False):
"""
For details, please refer to :func:`mindspore.ops.mean`.
"""
return tensor_operator_registry.get('mean')(self, axis, keep_dims)
[docs] def amin(self, axis=None, keepdims=False, *, initial=None, where=None):
"""
For details, please refer to :func:`mindspore.ops.amin`.
"""
if axis is None:
axis = ()
return tensor_operator_registry.get('amin')(self, axis, keepdims, initial=initial, where=where)
[docs] def reverse(self, axis):
"""
For details, please refer to :func:`mindspore.ops.flip`.
"""
return tensor_operator_registry.get('flip')(self, axis)
[docs] def amax(self, axis=None, keepdims=False, *, initial=None, where=None):
"""
For details, please refer to :func:`mindspore.ops.amax`.
"""
if axis is None:
axis = ()
return tensor_operator_registry.get('amax')(self, axis, keepdims, initial=initial, where=where)
[docs] def aminmax(self, *, axis=0, keepdims=False):
r"""
For details, please refer to :func:`mindspore.ops.aminmax`.
"""
return tensor_operator_registry.get('aminmax')(self, axis=axis, keepdims=keepdims)
[docs] def reverse_sequence(self, seq_lengths, seq_dim=0, batch_dim=0):
"""
For details, please refer to :func:`mindspore.ops.reverse_sequence`.
"""
return tensor_operator_registry.get("reverse_sequence")(self, seq_lengths, seq_dim, batch_dim)
[docs] def prod(self, axis=None, keep_dims=False, dtype=None):
"""
For details, please refer to :func:`mindspore.ops.prod`.
"""
return tensor_operator_registry.get('prod')(self, axis, keep_dims, dtype)
[docs] def select(self, condition, y):
r"""
For details, please refer to :func:`mindspore.ops.select`.
"""
if not isinstance(condition, Tensor):
raise TypeError(f"For 'Tensor.select', the argument 'condition' should be Tensor,"
f" but got {type(condition)}.")
if not isinstance(y, (Tensor, int, float)):
raise TypeError(f"For 'Tensor.select', the argument 'y' should be Tensor, int or float,"
f" but got {type(y)}.")
if isinstance(y, int) and self.dtype != mstype.int32:
raise TypeError(f"For 'Tensor.select', if the argument 'y' is int,"
f" then the tensor type should be int32 but got {self.dtype}")
if isinstance(y, float) and self.dtype != mstype.float32:
raise TypeError(f"For 'Tensor.select', if the argument 'y' is float,"
f" then the tensor type should be float32 but got {self.dtype}")
input_y = y
if isinstance(y, (int, float)):
input_y = tensor_operator_registry.get('zeros_like')(self) + y
if isinstance(y, int):
input_y = tensor_operator_registry.get('cast')(input_y, mstype.int32)
else:
input_y = tensor_operator_registry.get('cast')(input_y, mstype.float32)
return tensor_operator_registry.get('select')(condition, self, input_y)
[docs] def transpose(self, *axes):
r"""
For details, please refer to :func:`mindspore.ops.transpose`.
"""
perm = validator.check_transpose_axis(axes, self.ndim)
return tensor_operator_registry.get('transpose')(self, perm)
[docs] def col2im(self, output_size, kernel_size, dilation, padding_value, stride):
"""
For details, please refer to :func:`mindspore.ops.col2im`.
"""
return tensor_operator_registry.get('col2im')(self, output_size, kernel_size, dilation, padding_value, stride)
[docs] def reshape(self, *shape):
r"""
Rearranges the input Tensor based on the given `shape` .
The `shape` can only have one -1 at most, in which case it's inferred from the remaining dimensions and
the number of elements in the input.
Args:
shape (Union[int, tuple[int], list[int]]): If `shape` is a tuple or list, its elements should be
integers, and only constant value is allowed. i.e., :math:`(y_1, y_2, ..., y_S)`.
Returns:
Tensor, If the given `shape` does not contain -1, the `shape` of tensor is :math:`(y_1, y_2, ..., y_S)`.
If the k-th position in the given `shape` is -1, the `shape` of tensor is :math:`(y_1, ..., y_{k-1},
\frac{\prod_{i=1}^{R}x_{i}}{y_1\times ...\times y_{k-1}\times y_{k+1}\times...\times y_S} , y_{k+1},
..., y_S)`, in where the shape of input tensor is :math:`(x_1, x_2, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> input = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> output = input.reshape(3, 2)
>>> print(output)
[[-0.1 0.3]
[ 3.6 0.4]
[ 0.5 -3.2]]
"""
new_shape = validator.check_reshape_shp(shape)
return tensor_operator_registry.get('reshape')(self, new_shape)
[docs] def reshape_as(self, other):
"""
Change the shape of the Tensor to the shape of `other` without changing the data.
Args:
other(Tensor): The result tensor has the same shape as `other`.
Returns:
Tensor, has the same shape as `other`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore as ms
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]], dtype=ms.float32)
>>> y = Tensor(np.arange(6).reshape(3,2))
>>> output = x.reshape_as(y)
>>> print(output)
[[-0.1 0.3]
[ 3.6 0.4]
[ 0.5 -3.2]]
"""
return tensor_operator_registry.get('reshape')(self, other.shape)
[docs] def ravel(self):
"""
Return a contiguous flattened tensor.
Returns:
Tensor, a 1-D tensor, containing the same elements of the input.
See also:
- :func:`mindspore.Tensor.reshape`: Give a new shape to a tensor without changing its data.
- :func:`mindspore.Tensor.flatten`: Return a copy of the tensor collapsed into one dimension.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.ones((2,3,4), dtype=np.float32))
>>> output = x.ravel()
>>> print(output.shape)
(24,)
"""
reshape_op = tensor_operator_registry.get('reshape')
return reshape_op(self, (-1,))
[docs] def round(self):
"""
For details, please refer to :func:`mindspore.ops.round`.
"""
return tensor_operator_registry.get('round')(self)
[docs] def roll(self, shifts, dims):
"""
For details, please refer to :func:`mindspore.ops.roll`.
"""
return tensor_operator_registry.get('roll')(shifts, dims)(self)
[docs] def rot90(self, k, dims):
r"""
For details, please refer to :func:`mindspore.ops.rot90`.
"""
return tensor_operator_registry.get('rot90')(self, k, dims)
[docs] def deg2rad(self):
r"""
For details, please refer to :func:`mindspore.ops.deg2rad`.
"""
return tensor_operator_registry.get('deg2rad')(self)
[docs] def dot(self, other):
r"""
For details, please refer to :func:`mindspore.ops.dot`.
"""
return tensor_operator_registry.get('dot')(self, other)
[docs] def outer(self, vec2):
r"""
For details, please refer to :func:`mindspore.ops.outer`.
"""
return tensor_operator_registry.get('outer')(self, vec2)
[docs] def rad2deg(self):
r"""
For details, please refer to :func:`mindspore.ops.rad2deg`.
"""
return tensor_operator_registry.get('rad2deg')(self)
[docs] def copysign(self, other):
r"""
For details, please refer to :func:`mindspore.ops.copysign`.
"""
return tensor_operator_registry.get('copysign')(self, other)
[docs] def nelement(self):
r"""
Alias for :func:`mindspore.Tensor.numel`.
"""
return tensor_operator_registry.get('nelement')(self)
[docs] def numel(self):
r"""
For details, please refer to :func:`mindspore.ops.numel`.
"""
return tensor_operator_registry.get('numel')(self)
[docs] def permute(self, *axis):
"""
For details, please refer to :func:`mindspore.ops.permute`.
"""
perm = validator.check_transpose_axis(axis, self.ndim)
return tensor_operator_registry.get('permute')(self, perm)
[docs] def positive(self):
"""
For details, please refer to :func:`mindspore.ops.positive`.
"""
return tensor_operator_registry.get("positive")(self)
[docs] def remainder(self, divisor):
r"""
For details, please refer to :func:`mindspore.ops.remainder`.
"""
return tensor_operator_registry.get('remainder')(self, divisor)
[docs] def flatten(self, order='C', *, start_dim=0, end_dim=-1):
r"""
For details, please refer to :func:`mindspore.ops.flatten`.
"""
return tensor_operator_registry.get('flatten')(self, order, start_dim=start_dim, end_dim=end_dim)
[docs] def float_power(self, other):
r"""
For details, please refer to :func:`mindspore.ops.float_power`.
"""
return tensor_operator_registry.get('float_power')(self, other)
[docs] def fmax(self, other):
r"""
For details, please refer to :func:`mindspore.ops.fmax`.
"""
return tensor_operator_registry.get('fmax')(self, other)
def fmin(self, other):
r"""
For details, please refer to :func:`mindspore.ops.fmin`.
"""
return tensor_operator_registry.get('fmin')(self, other)
[docs] def fmod(self, other):
r"""
For details, please refer to :func:`mindspore.ops.fmod`.
"""
return tensor_operator_registry.get('fmod')(self, other)
[docs] def narrow(self, axis, start, length):
"""
For details, please refer to :func:`mindspore.ops.narrow`.
"""
return tensor_operator_registry.get('narrow')(self, axis, start, length)
[docs] def swapaxes(self, axis0, axis1):
"""
For details, please refer to :func:`mindspore.ops.swapaxes`.
"""
return tensor_operator_registry.get('swapaxes')(self, axis0, axis1)
[docs] def swapdims(self, dim0, dim1):
"""
For details, please refer to :func:`mindspore.ops.swapdims`.
"""
return tensor_operator_registry.get('swapdims')(self, dim0, dim1)
[docs] def squeeze(self, axis=None):
"""
For details, please refer to :func:`mindspore.ops.squeeze`.
"""
return tensor_operator_registry.get('squeeze')(self, axis)
[docs] def slogdet(self):
"""
For details, please refer to :func:`mindspore.ops.slogdet`.
"""
return tensor_operator_registry.get('slogdet')(self)
[docs] def tril(self, diagonal=0):
"""
For details, please refer to :func:`mindspore.ops.tril`.
"""
return tensor_operator_registry.get('tril')(self, diagonal)
[docs] def unsqueeze(self, dim):
"""
For details, please refer to :func:`mindspore.ops.unsqueeze`.
"""
validator.check_is_int(dim, 'dim')
validator.check_int_range(dim, -self.ndim - 1, self.ndim + 1, validator.INC_LEFT, 'dim')
return tensor_operator_registry.get('unsqueeze')(self, dim)
[docs] def expand_dims(self, axis):
"""
For details, please refer to :func:`mindspore.ops.expand_dims`.
"""
validator.check_is_int(axis, 'axis')
validator.check_int_range(axis, -self.ndim - 1, self.ndim + 1, validator.INC_LEFT, 'axis')
return tensor_operator_registry.get('expand_dims')(self, axis)
[docs] def astype(self, dtype, copy=True):
"""
Return a copy of the tensor, cast to a specified type.
Args:
dtype (Union[:class:`mindspore.dtype`, numpy.dtype, str]): Designated tensor dtype, can be in
format of `mindspore.dtype.float32` or `numpy.float32` or `float32`.
copy (bool, optional): By default, astype always returns a newly allocated
tensor. If this is set to ``false`` , the input tensor is returned instead
of a copy. Default: ``True`` .
Returns:
Tensor, with the designated dtype.
Raises:
TypeError: If the specified dtype cannot be understood.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.ones((1,2,2,1), dtype=np.float32))
>>> x = x.astype("int32")
>>> print(x.dtype)
Int32
"""
dtype = _check_astype_and_convert(dtype)
if not copy and dtype == self.dtype:
return self
return tensor_operator_registry.get('cast')(self, dtype)
[docs] def argmax(self, axis=None, keepdims=False):
"""
For details, please refer to :func:`mindspore.ops.argmax`.
"""
out = tensor_operator_registry.get('argmax')(self, axis, keepdims)
return out
[docs] def argmin(self, axis=None, keepdims=False):
"""
For details, please refer to :func:`mindspore.ops.argmin`.
"""
out = tensor_operator_registry.get('argmin')(self, axis, keepdims)
return out
[docs] def argmax_with_value(self, axis=0, keep_dims=False):
"""
Returns the maximum value with corresponding index.
Compute the max value of input Tensor on the specified axis, and return the max value and index.
Note:
- In auto_parallel and semi_auto_parallel mode, the first output index can not be used.
- If there are multiple maximum values, the index of the first maximum value is used.
- The value range of `axis` is [-dims, dims - 1]. `dims` is the dimension length of this tensor.
Args:
axis (int): The dimension to reduce. Default: ``0`` .
keep_dims (bool): Whether to reduce dimension, if ``true`` the output will keep the same dimension as the
input, the output will reduce dimension if ``false`` . Default: ``False`` .
Returns:
tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the maximum value of the input
tensor.
- **index** (Tensor) - The index for the maximum value of the input tensor.
If `keep_dims` is ``true`` , the shape of
output tensors is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`. Otherwise, the shape is
:math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` .
- **value** (Tensor) - The maximum value of input tensor, with the same shape as index.
Raises:
TypeError: If `keep_dims` is not a bool.
TypeError: If `axis` is not an int.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
>>> output, index = x.argmax_with_value()
>>> print(output, index)
0.7 3
>>> output, index = x.argmax_with_value(keep_dims=True)
>>> print(output, index)
[0.7] [3]
"""
if self.shape == ():
return (self, Tensor(0))
return tensor_operator_registry.get('argmax_with_value')(self, axis, keep_dims)
[docs] def argmin_with_value(self, axis=0, keep_dims=False):
"""
Returns the minimum value with corresponding index.
Note:
- In auto_parallel and semi_auto_parallel mode, the first output index can not be used.
- If there are multiple minimum values, the index of the first minimum value is used.
- The value range of `axis` is [-dims, dims - 1]. `dims` is the dimension length of this tensor.
Args:
axis (int): The dimension to reduce. Default: 0.
keep_dims (bool): Whether to reduce dimension, if true the output will keep the same dimension as the input,
the output will reduce dimension if false. Default: ``False``.
Returns:
tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the minimum value of the input
tensor.
- **index** (Tensor) - The index for the minimum value of the input tensor.
If `keep_dims` is true, the shape of
output tensors is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`. Otherwise, the shape is
:math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` .
- **value** (Tensor) - The minimum value of input tensor, with the same shape as index.
Raises:
TypeError: If `keep_dims` is not a bool.
TypeError: If `axis` is not an int.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
>>> output, index = x.argmin_with_value()
>>> print(output, index)
0.0 0
>>> output, index = x.argmin_with_value(keep_dims=True)
>>> print(output, index)
[0.0] [0]
"""
if self.shape == ():
return (self, Tensor(0))
return tensor_operator_registry.get('argmin_with_value')(self, axis, keep_dims)
[docs] def cumsum(self, axis=None, dtype=None):
"""
For details, please refer to :func:`mindspore.ops.cumsum`.
"""
x = self
original_dtype = x.dtype
# If original tensor is int, and has precision less then int32, convert to int32
if x.dtype in (mstype.bool_, mstype.int8, mstype.int16, mstype.uint8, mstype.int16):
x = x.astype(mstype.int32)
if axis is None:
x = x.ravel()
axis = 0
validator.check_axis_in_range(axis, x.ndim)
if dtype is not None and original_dtype != dtype:
return tensor_operator_registry.get('cumsum')()(x, axis).astype(dtype, copy=False)
return tensor_operator_registry.get('cumsum')()(x, axis)
[docs] def cummin(self, axis):
r"""
For details, please refer to :func:`mindspore.ops.cummin`.
"""
return tensor_operator_registry.get('cummin')(self, axis)
[docs] def cummax(self, axis):
r"""
For details, please refer to :func:`mindspore.ops.cummax`.
"""
return tensor_operator_registry.get('cummax')(self, axis)
[docs] def index_fill(self, axis, index, value):
"""
For details, please refer to :func:`mindspore.ops.index_fill`.
"""
return tensor_operator_registry.get('index_fill')(self, axis, index, value)
[docs] def index_select(self, axis, index):
"""
For details, please refer to :func:`mindspore.ops.index_select`.
"""
return tensor_operator_registry.get('index_select')(self, axis, index)
[docs] def inplace_update(self, v, indices):
"""
For details, please refer to :func:`mindspore.ops.inplace_update`.
"""
return tensor_operator_registry.get('inplace_update')(self, v, indices)
[docs] def copy(self):
"""
Return a copy of the tensor.
Note:
The current implementation does not support `order` argument.
Returns:
Copied tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> a = Tensor(np.ones((3,3)).astype("float32"))
>>> output = a.copy()
>>> print(output)
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]
"""
if self.size == 0:
return self
origin_dtype = self.dtype
x = self
logical_not_op = tensor_operator_registry.get('logical_not')
if origin_dtype == mstype.bool_:
return logical_not_op(logical_not_op(x))
if origin_dtype != mstype.float64:
x = x.astype("float32")
x = x / 1.0
x = x.astype(origin_dtype)
return x
[docs] def max(self, axis=None, keepdims=False, *, initial=None, where=True, return_indices=False):
"""
Return the maximum of a tensor or maximum along an axis.
Note:
When `axis` is ``None``, `keepdims` and subsequent parameters
have no effect. At the same time, the index is fixed to return 0.
Args:
axis (Union[None, int, list, tuple of ints], optional): Axis or
axes along which to operate. By default, flattened input is used. If
this is a tuple of ints, the maximum is selected over multiple axes,
instead of a single axis or all the axes as before. Default: ``None`` .
keepdims (bool, optional):
If this is set to ``True`` , the axes which are reduced are left in the
result as dimensions with size one. With this option, the result will
broadcast correctly against the input array. Default: ``False`` .
Keyword Args:
initial (scalar, optional):
The minimum value of an output element. Must be present to allow
computation on empty slice. Default: ``None`` .
where (bool Tensor, optional):
A boolean tensor which is broadcasted to match the dimensions of array,
and selects elements to include in the reduction. If non-default value
is passed, initial must also be provided. Default: ``True`` .
return_indices (bool, optional): Whether to return the index of the maximum value.
Default: ``False`` . If `axis` is a list or tuple of ints, it must be ``False`` .
Returns:
Tensor or scalar, maximum of input tensor. If `axis` is ``None`` , the result is a scalar
value. If `axis` is given, the result is a tensor of dimension ``self.ndim - 1``.
Raises:
TypeError: If arguments have types not specified above.
See also:
- :func:`mindspore.Tensor.argmin`: Return the indices of the minimum values along an axis.
- :func:`mindspore.Tensor.argmax`: Return the indices of the maximum values along an axis.
- :func:`mindspore.Tensor.min`: Return the minimum of a tensor or minimum along an axis.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> a = Tensor(np.arange(4).reshape((2, 2)).astype('float32'))
>>> output = a.max()
>>> print(output)
3.0
>>> value, indices = a.max(axis=0, return_indices=True)
>>> print(value)
[2. 3.]
>>> print(indices)
[1 1]
"""
if isinstance(axis, (list, tuple)):
reduce_ = tensor_operator_registry.get("reduce")
reduce_max = tensor_operator_registry.get("reduce_max")
maximum = tensor_operator_registry.get("maximum")
return reduce_(self, reduce_max(keepdims), cmp_fn=maximum, axis=axis, keepdims=keepdims,
initial=initial, where=where)
values, indices = tensor_operator_registry.get("max")(self, axis, keepdims, initial=initial, where=where)
if not return_indices:
return values
return values, indices
[docs] def min(self, axis=None, keepdims=False, *, initial=None, where=True, return_indices=False):
"""
Return the minimum of a tensor or minimum along an axis.
Note:
When `axis` is ``None``, `keepdims` and subsequent parameters
have no effect. At the same time, the index is fixed to return 0.
Args:
axis (Union[None, int, list, tuple of ints], optional): An axis or
axes along which to operate. By default, flattened input is used. If
`axis` is a tuple of ints, the minimum is selected over multiple axes,
instead of a single axis or all the axes as before. Default: ``None`` .
keepdims (bool, optional):
If ``True`` , the axes which are reduced are left in the
result as dimensions with size one. With this option, the result will
broadcast correctly against the input array. Default: ``False`` .
Keyword Args:
initial (scalar, optional):
The minimum value of an output element. Must be present to allow
computation on empty slice. Default: ``None`` .
where (Tensor[bool], optional):
A boolean tensor which is broadcasted to match the dimensions of array,
and selects elements to include in the reduction. If non-default value
is passed, initial must also be provided. Default: ``True`` .
return_indices (bool, optional): Whether to return the index of the minimum value. Default: ``False`` .
If `axis` is a list or tuple of ints, it must be ``False`` .
Returns:
Tensor or scalar, minimum of input tensor. If `axis` is ``None`` , the result is a scalar
value. If `axis` is given, the result is a tensor of dimension ``self.ndim - 1``.
Raises:
TypeError: If arguments have types not specified above.
See also:
- :func:`mindspore.Tensor.argmin`: Return the indices of the minimum values along an axis.
- :func:`mindspore.Tensor.argmax`: Return the indices of the maximum values along an axis.
- :func:`mindspore.Tensor.max`: Return the minimum of a tensor or minimum along an axis.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> a = Tensor(np.arange(4).reshape((2, 2)).astype('float32'))
>>> output = a.min()
>>> print(output)
0.0
>>> output = a.min(axis=0)
>>> print(output)
[0. 1.]
>>> output = a.min(axis=0, initial=9, where=Tensor([False]))
>>> print(output)
[9. 9.]
>>> output = a.min(axis=0, initial=9, where=Tensor([False, True]))
>>> print(output)
[9. 1.]
>>> value, indices = a.min(axis=0, return_indices=True)
>>> print(value)
[0. 1.]
>>> print(indices)
[0 0]
"""
if isinstance(axis, (list, tuple)):
reduce_ = tensor_operator_registry.get("reduce")
reduce_min = tensor_operator_registry.get("reduce_min")
minimum = tensor_operator_registry.get("minimum")
return reduce_(self, reduce_min(keepdims), cmp_fn=minimum, axis=axis, keepdims=keepdims,
initial=initial, where=where)
values, indices = tensor_operator_registry.get("min")(self, axis, keepdims, initial=initial, where=where)
if not return_indices:
return values
return values, indices
[docs] def scatter_add(self, indices, updates):
"""
For details, please refer to :func:`mindspore.ops.scatter_add`.
"""
return tensor_operator_registry.get("tensor_scatter_add")(self, indices, updates)
[docs] def scatter_sub(self, indices, updates):
"""
Creates a new tensor by subtracting the values from the positions in self tensor indicated by
`indices`, with values from `updates`. When multiple values are provided for the same
index, the result of the update will be to subtract these values respectively. This operation is almost
equivalent to using :class:`mindspore.ops.ScatterNdSub` , except that the updates are applied on output `Tensor`
instead of input `Parameter`.
The last axis of `indices` is the depth of each index vectors. For each index vector,
there must be a corresponding value in `updates`. The shape of `updates` should be
equal to the shape of `self[indices]`. For more details, see Examples.
Note:
On GPU, if some values of the `indices` are out of bound, instead of raising an index error,
the corresponding `updates` will not be updated to self tensor. On CPU, if some values of
the `indices` are out of bound, raising an index error. On Ascend, out of bound checking is
not supported, if some values of the `indices` are out of bound, unknown errors may be caused.
Args:
indices (Tensor): The index of input tensor whose data type is int32 or int64.
The rank must be at least 2.
updates (Tensor): The tensor to update the input tensor, has the same type as input,
and updates.shape should be equal to indices.shape[:-1] + self.shape[indices.shape[-1]:].
Returns:
Tensor, has the same shape and type as self tensor.
Raises:
TypeError: If dtype of `indices` is neither int32 nor int64.
ValueError: If length of shape of self tensor is less than the last dimension of shape of `indices`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype('float32'))
>>> indices = Tensor(np.array([[0, 0], [0, 0]]).astype('int32'))
>>> updates = Tensor(np.array([1.0, 2.2]).astype('float32'))
>>> output = x.scatter_sub(indices, updates)
>>> print(output)
[[-3.3000002 0.3 3.6 ]
[ 0.4 0.5 -3.2 ]]
"""
return tensor_operator_registry.get('tensor_scatter_sub')(self, indices, updates)
[docs] def scatter_min(self, indices, updates):
"""
For details, please refer to :func:`mindspore.ops.scatter_min`.
"""
return tensor_operator_registry.get('tensor_scatter_min')(self, indices, updates)
[docs] def scatter_max(self, indices, updates):
"""
For details, please refer to :func:`mindspore.ops.scatter_max`.
"""
return tensor_operator_registry.get('tensor_scatter_max')(self, indices, updates)
[docs] def softmax(self, axis, dtype=None):
"""
For details, please refer to :func:`mindspore.ops.softmax`.
"""
return tensor_operator_registry.get('softmax')(self, axis, dtype=dtype)
def fill(self, value):
"""
`Tensor.fill` is deprecated, please use `ops.fill` instead.
"""
if value is None:
if self.dtype not in (mstype.float16, mstype.float32, mstype.float64):
raise TypeError("For 'Tensor.fill', if the argument 'value' is None, the type of the original "
"tensor must be float, but got {}.".format(self.dtype))
value = Tensor(float('nan')).astype("float32")
return tensor_operator_registry.get("tile")()(value, self.shape).astype(self.dtype)
return tensor_operator_registry.get("fill")(self.dtype, self.shape, value)
def fills(self, value):
"""
`Tensor.fills` is deprecated, please use `ops.fill` instead.
"""
return tensor_operator_registry.get('fills')(self, value)
[docs] def fill_diagonal(self, fill_value, wrap=False):
"""
Fills the main diagonal of a Tensor with a specified value and returns the result.
The input has at least 2 dimensions, and all dimensions of input must be equal in length
when the dimension of input is greater than 2.
.. warning::
This is an experimental API that is subject to change or deletion.
Args:
fill_value (float): The value to fill with the diagonal of `self`.
wrap (bool, optional): Controls whether the diagonal elements continue onto the
remaining rows in case of a tall matrix(a matrix has more rows than columns). Default: ``False``.
Returns:
- **y** (Tensor) - Tensor, has the same shape and data type as `self`.
Raises:
TypeError: If data type of `self` is not one of the following: float32, int32, int64.
ValueError: If the dimension of `self` is not greater than 1.
ValueError: If the size of each dimension is not equal, when the dimension is greater than 2.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor(np.ones((6, 3)), mindspore.float32)
>>> output = x.fill_diagonal(5.0, wrap=True)
>>> print(output)
[[5. 1. 1.]
[1. 5. 1.]
[1. 1. 5.]
[1. 1. 1.]
[5. 1. 1.]
[1. 5. 1.]]
"""
return tensor_operator_registry.get('fill_diagonal')(fill_value, wrap)(self)
[docs] def masked_fill(self, mask, value):
"""
For details, please refer to :func:`mindspore.ops.masked_fill`.
"""
if isinstance(value, (float, int)):
value = tensor_operator_registry.get("scalar_to_tensor")(value, self.dtype)
if not isinstance(mask, Tensor):
raise TypeError("For 'Tensor.masked_fill', the type of the argument 'mask' must be Tensor, but "
"got {}.".format(type(mask)))
validator.check_type_name('mask', mask.dtype, [mstype.bool_], "Tensor")
return tensor_operator_registry.get("masked_fill")(self, mask, value)
[docs] def ptp(self, axis=None, keepdims=False):
"""
The name of the function comes from the acronym for "peak to peak". Calculate the difference between the
maximum value and the minimum value along the axis.
Note:
Numpy argument `out` is not supported.
Args:
axis (Union[None, int, tuple(int)]): Axis or axes along which the range is computed.
The default is to compute the variance of the flattened tensor. Default: ``None`` .
keepdims (bool): If this is set to ``True`` , the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will broadcast correctly against the tensor.
Default is ``False`` .
Returns:
Tensor.
Raises:
TypeError: If `self` is not a tensor, or `axis` and `keepdims` have types not specified above.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> from mindspore import Tensor
>>> x = Tensor([[4.0, 9.0, 2.0, 10.0], [6.0, 9.0, 7.0, 12.0]]).astype("float32")
>>> print(x.ptp(axis=1))
[8. 6.]
>>> print(x.ptp(axis=0))
[2. 0. 5. 2.]
"""
if not isinstance(keepdims, bool):
raise TypeError("For 'Tensor.ptp', the type of the argument 'keepdims' must be bool, "
"but got {}.".format(type(keepdims)))
if axis is None:
axis = ()
else:
validator.check_axis_type(axis, True, True, False)
axis = validator.check_axis_valid(axis, self.ndim)
return self.max(axis, keepdims) - self.min(axis, keepdims)
[docs] def minimum(self, other):
r"""
For details, please refer to :func:`mindspore.ops.minimum`.
"""
return tensor_operator_registry.get('minimum')(self, other)
[docs] def clamp(self, min=None, max=None):
r"""
For details, please refer to :func:`mindspore.ops.clamp`.
"""
return tensor_operator_registry.get('clamp')(self, min, max)
[docs] def clip(self, min=None, max=None):
r"""
Alias for :func:`mindspore.Tensor.clamp`.
"""
return self.clamp(min, max)
[docs] def init_data(self, slice_index=None, shape=None, opt_shard_group=None):
"""
Get the tensor format data of this Tensor.
Note:
The init_data function can be called once for the same tensor.
Args:
slice_index (int): Slice index of a parameter's slices.
It is used when initialize a slice of a parameter, it guarantees that devices
using the same slice can generate the same tensor. Default: ``None``.
shape (list[int]): Shape of the slice, it is used when initialize a slice of the parameter.
Default: ``None``.
opt_shard_group(str): Optimizer shard group which is used in auto or semi auto parallel mode
to get one shard of a parameter's slice. For more information about optimizer parallel, please refer to:
`Optimizer Parallel
<https://www.mindspore.cn/tutorials/experts/en/r2.3.1/parallel/optimizer_parallel.html>`_.
Default: ``None``.
Returns:
Initialized Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore as ms
>>> from mindspore.common.initializer import initializer, Constant
>>> x = initializer(Constant(1), [2, 2], ms.float32)
>>> out = x.init_data()
>>> print(out)
[[1. 1.]
[1. 1.]]
"""
if self.init is None:
raise TypeError("init_data must be set Tensor.init, init can't be None")
if shape is None:
shape = self.shape
# At embedding cache scenes, we need limit the size of memory for tensor.
# And save out of range data to persistent storage to support TB-Level size of tensor.
data_shape = list(shape)
slice_num_of_persistent_data = get_slice_num(self.dtype, shape)
if slice_num_of_persistent_data > 1:
slice_first_dim = math.ceil(shape[0] / slice_num_of_persistent_data)
data_shape[0] = slice_first_dim
self.slice_shape_of_persistent_data_ = data_shape
self.slice_num_of_persistent_data_ = slice_num_of_persistent_data
try:
data = np.ndarray(data_shape, dtype=mstype.dtype_to_nptype(self.dtype))
except ValueError as e:
msg = "Error shape={}".format(shape)
logger.critical(msg)
raise ValueError(msg) from e
class seed_context:
"""Set and restore seed."""
def __init__(self, init):
self.init = init
global_seed = get_seed()
self._np_seed = np.random.get_state()[1][0]
self.need_set_seed = (slice_index is not None)
self._global_seed = global_seed
self._seed_offset = 1
if self.need_set_seed:
self._seed_offset = get_group_size() * 2
def __enter__(self):
if self.need_set_seed:
self.seed = self.init.seed
if self._global_seed is not None:
np.random.seed(slice_index + self._global_seed)
self.init.seed = slice_index + self._global_seed
else:
np.random.seed(slice_index + Tensor.delta_seed)
self.init.seed = slice_index + Tensor.delta_seed
Tensor.delta_seed += self._seed_offset
def __exit__(self, ptype, value, trace):
if self.need_set_seed:
np.random.seed(self._np_seed)
self.init.seed, _ = self.seed
with seed_context(self.init):
if slice_num_of_persistent_data == 1:
self.init(data)
self.init = None
# At embedding cache scenes. When size of tensor is out of range, we store data to persistent storage
if slice_num_of_persistent_data > 1:
self.assign_value(Tensor_.persistent_data_from_numpy(data, slice_num_of_persistent_data))
else:
self.assign_value(Tensor_.from_numpy(data))
return self
[docs] def resize(self, *new_shape):
"""
Changes shape and size of tensor in-place.
If the shape of the new tensor is larger than the shape of the original tensor, the new tensor will be filled
with 0. And if the shape of the new tensor is smaller than the shape of the original tensor, the new tensor is
filled with the elements of the original tensor in order.
Note:
Instead of changing the size of the input tensor and returns nothing as in numpy,
this method returns a new Tensor with the input size.
Numpy argument `refcheck` is not supported.
Args:
new_shape (Union[ints, tuple of ints]): Shape of resized tensor.
Returns:
Tensor.
See also:
- :func:`mindspore.Tensor.reshape`: Give a new shape to a tensor without changing its data.
- :func:`mindspore.Tensor.repeat`: Repeat elements of a tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x.resize(3, 3)
>>> print(y)
[[1. 2. 3.]
[4. 5. 6.]
[0. 0. 0.]]
>>> y = x.resize(2, 2)
>>> print(y)
[[1. 2.]
[3. 4.]]
"""
if not new_shape:
return self
if len(new_shape) == 1:
if isinstance(new_shape[0], tuple):
new_shape = new_shape[0]
flattened = self.ravel()
cur_size = flattened.size
new_size = tensor_operator_registry.get('shape_mul')(new_shape)
diff_size = new_size - cur_size
if diff_size > 0:
pad_val = tensor_operator_registry.get('fill')(self.dtype, (diff_size,), 0)
res = tensor_operator_registry.get('concatenate')((flattened, pad_val), 0)
else:
res = flattened[:new_size]
return res.reshape(new_shape)
def det(self):
r"""
For details, please refer to :func:`mindspore.ops.det`.
"""
return tensor_operator_registry.get('det')(self)
[docs] def diff(self, n=1, axis=-1, prepend=None, append=None):
r"""
For details, please refer to :func:`mindspore.ops.diff`.
"""
return tensor_operator_registry.get('diff')(self, n, axis, prepend, append)
[docs] def frac(self):
r"""
For details, please refer to :func:`mindspore.ops.frac`.
"""
return tensor_operator_registry.get('frac')(self)
[docs] def argwhere(self):
r"""
For details, please refer to :func:`mindspore.ops.argwhere`.
"""
return tensor_operator_registry.get('argwhere')(self)
[docs] def moveaxis(self, source, destination):
r"""
For details, please refer to :func:`mindspore.ops.moveaxis`.
"""
return tensor_operator_registry.get('moveaxis')(self, source, destination)
[docs] def movedim(self, source, destination):
r"""
For details, please refer to :func:`mindspore.ops.movedim`.
"""
return tensor_operator_registry.get('movedim')(self, source, destination)
[docs] def digamma(self):
r"""
For details, please refer to :func:`mindspore.ops.digamma`.
"""
return tensor_operator_registry.get('digamma')(self)
def lgamma(self):
r"""
For details, please refer to :func:`mindspore.ops.lgamma`.
"""
return tensor_operator_registry.get('lgamma')(self)
[docs] def diagonal(self, offset=0, axis1=0, axis2=1):
"""
For details, please refer to :func:`mindspore.ops.diagonal`.
"""
return tensor_operator_registry.get('diagonal')(self, offset, axis1, axis2)
[docs] def diagonal_scatter(self, src, offset=0, dim1=0, dim2=1):
r"""
For details, please refer to :func:`mindspore.ops.diagonal_scatter`.
"""
return tensor_operator_registry.get('diagonal_scatter')(self, src, offset, dim1, dim2)
[docs] def trace(self, offset=0, axis1=0, axis2=1, dtype=None):
"""
Return the sum along diagonals of the tensor.
Args:
offset (int, optional): Offset of the diagonal from the main diagonal.
Can be positive or negative. Defaults to main diagonal.
axis1 (int, optional): Axis to be used as the first axis of the 2-D
sub-arrays from which the diagonals should be taken. Defaults to
first axis (0).
axis2 (int, optional): Axis to be used as the second axis of the 2-D
sub-arrays from which the diagonals should be taken. Defaults to
second axis.
dtype (:class:`mindspore.dtype`, optional): defaults to None. Overrides the dtype of the
output Tensor.
Returns:
Tensor, the sum along diagonals.
Raises:
ValueError: If the input tensor has less than two dimensions.
See also:
- :func:`mindspore.Tensor.diagonal`: Return specified diagonals.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.eye(3, dtype=np.float32))
>>> print(x.trace())
3.0
"""
if offset == 0 and axis1 == 0 and axis2 == 1 and dtype is None:
return tensor_operator_registry.get('trace')(self)
d = self.diagonal(offset, axis1=axis1, axis2=axis2)
shape = d.shape
if dtype is None:
dtype = d.dtype
if shape[-1] == 0:
return tensor_operator_registry.get('fill')(dtype, shape[:-1], 0)
res = tensor_operator_registry.get('reduce_sum')(d.astype(mstype.float32), -1)
return res.astype(dtype)
[docs] def take(self, indices, axis=None, mode='clip'):
"""
Takes elements from a tensor along an axis.
Args:
indices (Tensor): The indices with shape :math:`(Nj...)` of the values to extract.
axis (int, optional): The axis over which to select values. By default,
the flattened input tensor is used. Default: ``None`` .
mode (str, optional): Support ``'raise'``, ``'wrap'``, ``'clip'``.
- ``raise``: Raises an error;
- ``wrap``: Wraps around;
- ``clip``: Clips to the range. ``'clip'`` mode means that all indices that are
too large are replaced by the index that addresses the last element
along that axis. Note that this disables indexing with negative numbers.
Default: ``'clip'`` .
Returns:
Tensor, the indexed result.
Raises:
ValueError: If `axis` is out of range, or `mode` has values other than ('raise', 'wrap', 'clip')
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> a = Tensor(np.array([4, 3, 5, 7, 6, 8]))
>>> indices = Tensor(np.array([0, 1, 4]))
>>> output = a.take(indices)
>>> print(output)
[4 3 6]
"""
if mode not in ('raise', 'wrap', 'clip'):
raise ValueError(f"For 'Tensor.take', the argument 'mode' should be one of in ['raise', 'wrap', 'clip'],"
f" but got {mode}.")
if axis is None:
a = self.ravel()
axis = 0
else:
a = self
ndim = a.ndim
validator.check_axis_in_range(axis, ndim)
axis = axis + ndim if axis < 0 else axis
shape_a = a.shape
shape_indices = indices.shape
size_indices = indices.size
indices = tensor_operator_registry.get('check_indices')(shape_a[axis], indices, mode)
# reshapes indices to shape (Ni..., Nj..., Nk)
shape_ni = shape_a[:axis]
shape_nk = shape_a[axis + 1:]
shape_out = shape_ni + shape_indices + shape_nk
shape_indices = tuple(size_indices if i == axis else 1 for i in range(ndim))
indices = indices.reshape(shape_indices)
shape_indices = shape_ni + (indices.size,) + shape_nk
indices = tensor_operator_registry.get('broadcast_to')(indices, shape_indices)
res = tensor_operator_registry.get('gather_d')(a, axis, indices)
return res.reshape(shape_out)
[docs] def choose(self, choices, mode='clip'):
"""
Construct a tensor from an index tensor and a list of tensors to choose from.
Args:
choices (Union[tuple, list, Tensor]): Choice tensors. The input tensor and all of the
`choices` must be broadcasted to the same shape. If `choices` is itself a tensor,
then its outermost dimension (i.e., the one corresponding to ``choices.shape[0]``)
is taken as defining the "sequence".
mode (str, optional): Specifies how indices outside
``[0, n-1]`` will be treated. Support ``'raise'``, ``'wrap'``, ``'clip'``.
- ``raise``: Raises an error;
- ``wrap``: Wraps around;
- ``clip``: Clips to the range. The values greater than n-1 will be mapped to n-1.
Note that this mode disables indexing with negative numbers.
Default: ``'clip'``.
Returns:
Tensor, the merged result.
Raises:
ValueError: If the input tensor and any of the `choices` cannot be broadcast.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]]
>>> x = Tensor(np.array([2, 3, 1, 0]))
>>> print(x.choose(choices))
[20 31 12 3]
"""
if isinstance(choices, Tensor):
shape_choice = validator.infer_out_shape(self.shape, choices.shape[1:])
choices = tensor_operator_registry.get('broadcast_to')(choices, (choices.shape[0],) + shape_choice)
else:
# broadcasts choices to the same shape if choices is a sequence
choicelist = []
shapes = ()
for choice in choices:
if not isinstance(choice, Tensor):
choice = tensor_operator_registry.get('make_tensor')(choice)
shapes += (choice.shape,)
choicelist.append(choice)
shape_choice = validator.infer_out_shape(self.shape, *shapes)
tmp = []
for choice in choicelist:
tmp.append(tensor_operator_registry.get('broadcast_to')(choice, shape_choice))
choices = tensor_operator_registry.get('stack')(tmp, 0)
if self.ndim == 0 or choices.ndim == 0:
raise ValueError(f"For 'Tensor.choose', the original tensor and the argument 'choices' cannot be scalars."
f" Their dimensions should all be > 0, but got the original tensor's dimension "
f"{self.ndim}, 'choices' dimension {choices.ndim}.")
a = tensor_operator_registry.get('broadcast_to')(self, shape_choice)
dtype = choices.dtype
# adjusts dtype for F.tensor_mul and F.gather_nd
a = a.astype(mstype.int32)
choices = choices.astype(mstype.int32)
a = tensor_operator_registry.get('check_indices')(choices.shape[0], a, mode, allow_negative_index=False)
grids = []
ndim = len(a.shape)
for i in range(ndim):
dim_grid = Tensor(list(range(a.shape[i])), mstype.int32)
dim_shape = validator.expanded_shape(ndim, a.shape[i], i)
dim_grid = tensor_operator_registry.get('broadcast_to')(dim_grid.reshape(dim_shape), a.shape)
grids.append(dim_grid)
grid = tensor_operator_registry.get('stack')(grids, -1)
indices = tensor_operator_registry.get('concatenate')((a.reshape(a.shape + (1,)), grid), -1)
return tensor_operator_registry.get('gather_nd')(choices, indices).astype(dtype)
[docs] def searchsorted(self, v, side='left', sorter=None):
"""
Finds indices where elements should be inserted to maintain order.
Args:
v (Union[int, float, bool, list, tuple, Tensor]): Values to insert into the tensor.
side (str, optional): If 'left', the index of the first suitable
location found is given. If 'right', return the last such index. If there is
no suitable index, return either 0 or N (where N is the length of the tensor).
Default: ``left`` .
sorter (Union[int, list, tuple, Tensor]): optional tensor of
integer indices that sort the tensor into ascending order on the innermost dimension
and the type must be int64. They are typically the result of argsort. Default: ``None`` .
Returns:
Tensor, array of insertion points with the same shape as `v`.
Raises:
ValueError: If argument for `side` or `sorter` is invalid.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.array([1, 2, 3, 4, 5]))
>>> print(x.searchsorted(3))
2
"""
if side not in ('left', 'right'):
raise ValueError(f"For 'Tensor.searchsorted', the argument 'side' should be one of in "
f"['left', 'right'], but got {side}.")
if not isinstance(v, Tensor):
v = tensor_operator_registry.get('make_tensor')(v)
if sorter is not None:
if not isinstance(sorter, (int, list, tuple, Tensor)):
raise TypeError("For Tensor.searchsorted, the type of the argument 'sorter' must be one of 'int', "
"'list', 'tuple', 'Tensor', but got {}.".format(type(sorter)))
if not isinstance(sorter, Tensor):
sorter = tensor_operator_registry.get('make_tensor')(sorter)
if sorter.size != self.size:
raise ValueError('The size of sorter must be the same as the Tensor')
dtype = mstype.int32
right = (side == 'right')
search_sorted_ = tensor_operator_registry.get('searchsorted')(dtype, right)
return search_sorted_(self, v, sorter)
[docs] def gather_nd(self, indices):
r"""
For details, please refer to :func:`mindspore.ops.gather_nd`.
"""
validator.check_value_type('indices', indices, (Tensor, Tensor_,), 'Tensor.gather_nd')
return tensor_operator_registry.get('gather_nd')(self, indices)
[docs] def gather(self, input_indices, axis, batch_dims=0):
r"""
For details, please refer to :func:`mindspore.ops.gather`.
"""
validator.check_is_int(axis, 'axis')
validator.check_is_int(batch_dims, "batch_dims")
return tensor_operator_registry.get('gather')(self, input_indices, axis, batch_dims)
[docs] def var(self, axis=None, ddof=0, keepdims=False):
"""
Compute the variance along the specified axis.
The variance is the average of the squared deviations from the mean, i.e.,
:math:`var = mean(abs(x - x.mean())**2)`.
Return the variance, which is computed for the flattened array by default,
otherwise over the specified axis.
Note:
Numpy arguments `dtype`, `out` and `where` are not supported.
Args:
axis (Union[None, int, tuple(int)]): Axis or axes along which the variance is computed.
The default is to compute the variance of the flattened array. Default: ``None`` .
ddof (int): Means Delta Degrees of Freedom. Default: ``0`` .
The divisor used in calculations is :math:`N - ddof`, where :math:`N` represents the number of elements.
keepdims (bool): Default: ``False`` .
Returns:
Variance tensor.
See also:
- :func:`mindspore.Tensor.mean`: Reduce a dimension of a tensor by averaging all elements in the dimension.
- :func:`mindspore.Tensor.std`: Compute the standard deviation along the specified axis.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> input_x = Tensor(np.array([1., 2., 3., 4.], np.float32))
>>> output = input_x.var()
>>> print(output)
1.25
"""
if 0 in self.shape:
return Tensor(float('nan'), self.dtype)
if not isinstance(ddof, int):
raise TypeError("For 'Tensor.var', the type of the argument 'ddof' must be int, but got "
"{}.".format(type(ddof)))
if not isinstance(keepdims, bool):
raise TypeError("For 'Tensor.var', the type of the argument 'keepdims' must be bool, but "
"got {}.".format(type(keepdims)))
if axis is None:
axis = ()
else:
axis = validator.check_and_canonicalize_axes(axis, self.ndim)
x_mean = tensor_operator_registry.get('mean')(self, axis, True)
x_sub = tensor_operator_registry.get('__sub__')(self, x_mean)
x_pow = tensor_operator_registry.get('__pow__')(x_sub, 2)
x_sum = tensor_operator_registry.get('reducesum')(bool(keepdims))(x_pow, axis)
nums = 1
if axis == ():
nums = self.size
else:
for ax in axis:
nums *= self.shape[ax]
return tensor_operator_registry.get('__truediv__')(x_sum, nums - ddof)
[docs] def std(self, axis=None, ddof=0, keepdims=False):
"""
For details, please refer to :func:`mindspore.ops.std`.
"""
x_var = self.var(axis, ddof, keepdims)
return tensor_operator_registry.get('__pow__')(x_var, 0.5)
[docs] def sum(self, axis=None, dtype=None, keepdims=False, initial=None):
"""
Return sum of tensor elements over a given axis.
Note:
Numpy arguments `out`, `where`, `casting`, `order`, `subok`, `signature`, and `extobj` are not supported.
The `axis` with tensor type is only used for compatibility with older versions and is not recommended.
Args:
axis (Union[None, int, tuple(int), list(int), Tensor]): Axis or axes along which a sum is performed.
Default: ``None`` .
If ``None`` , sum all the elements of the input tensor.
If the `axis` is negative, it counts from the last to the first `axis`.
If the `axis` is a tuple or list of ints, a sum is performed on all the axes specified in the tuple
or list instead of a single `axis` or all the axes as before.
dtype (:class:`mindspore.dtype`, optional): defaults to ``None`` . Overrides the dtype of the
output Tensor.
keepdims (bool): If this is set to ``True`` , the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will broadcast correctly against the input
array. If the default value is passed, then `keepdims` will not be passed through to the sum method
of sub-classes of ndarray, however any non-default value will be. If the sub-class method does not
implement `keepdims` any exceptions will be raised. Default: ``False`` .
initial (scalar): Starting value for the sum. Default: ``None`` .
Returns:
Tensor. A tensor with the same shape as input, with the specified `axis` removed.
If the input tensor is a 0-d array, or if the `axis` is ``None`` , a scalar is returned.
Raises:
TypeError: If input is not array_like, or `axis` is not int, tuple of ints, list of ints or Tensor,
or `keepdims` is not integer, or `initial` is not scalar.
ValueError: If any `axis` is out of range or duplicate axes exist.
See also:
- :func:`mindspore.Tensor.cumsum`: Return the cumulative sum of the elements along a given `axis`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> input_x = Tensor(np.array([-1, 0, 1]).astype(np.float32))
>>> print(input_x.sum())
0.0
>>> input_x = Tensor(np.arange(10).reshape(2, 5).astype(np.float32))
>>> print(input_x.sum(axis=1))
[10. 35.]
"""
if initial is None:
res = tensor_operator_registry.get("sum")(self, axis, keepdims, dtype=dtype)
else:
res = tensor_operator_registry.get("sum")(self, axis, keepdims, dtype=dtype) + initial
if dtype is not None and (dtype == mstype.bool_):
res = res.astype(mstype.bool_)
return res
[docs] def sum_to_size(self, *size):
r"""
Sum self Tensor to the `size`. `size` must be expandable to the Tensor size.
Args:
size (Union[tuple(int), int]): The expected shape of output Tensor.
Returns:
Tensor, the sum result of self Tensor according to the `size`.
Raises:
ValueError: If `size` is not expandable to the size of self Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor(np.random.randn(3, 3, 3, 3, 3, 3), mindspore.float32)
>>> output = x.sum_to_size((1, 3, 1, 3))
>>> print(output.shape)
(1, 3, 1, 3)
"""
x = self
if len(size) == 1 and isinstance(size[0], tuple):
size = size[0]
shape_x = x.shape
if len(size) > x.ndim:
raise ValueError(f"For sum_to_size, size {size} is not expandable to the tensor size {shape_x}.")
if len(size) < x.ndim:
pre_axis = tuple([axis for axis in range(x.ndim - len(size))])
x = x.sum(pre_axis)
axes = []
for i, element in enumerate(size):
if element != x.shape[i] and element == 1:
axes.append(i)
elif element != x.shape[i]:
raise ValueError(f"For sum_to_size, size {size} is not expandable to the tensor size {shape_x}.")
if axes:
return x.sum(tuple(axes), keepdims=True)
return x
[docs] def nansum(self, axis=None, keepdims=False, dtype=None):
"""
For details, please refer to :func:`mindspore.ops.nansum`.
"""
return tensor_operator_registry.get('nansum')(self, axis=axis, keepdims=keepdims, dtype=dtype)
[docs] def nanmean(self, axis=None, keepdims=False, *, dtype=None):
r"""
For details, please refer to :func:`mindspore.ops.nanmean`.
"""
return tensor_operator_registry.get('nanmean')(self, axis, keepdims, dtype=dtype)
[docs] def repeat(self, repeats, axis=None):
"""
Repeat elements of a tensor.
Args:
repeats (Union[int, tuple, list]): The number of repetitions for each element.
`repeats` is broadcasted to fit the shape of the given axis.
axis (int, optional): The axis along which to repeat values. By default,
use the flattened input tensor, and return a flat output tensor. Default: ``None``.
Returns:
Tensor, has the same shape as input tensor except along the given axis.
Raises:
ValueError: If the axis is out of range.
TypeError: If arguments have types not specified above.
See also:
- :func:`mindspore.Tensor.reshape`: Give a new shape to a tensor without changing its data.
- :func:`mindspore.Tensor.resize`: Changes shape and size of tensor in-place.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.array(3))
>>> print(x.repeat(4))
[3 3 3 3]
>>> x = Tensor(np.array([[1, 2],[3, 4]]))
>>> print(x.repeat(2))
[1 1 2 2 3 3 4 4]
>>> print(x.repeat(3, axis=1))
[[1 1 1 2 2 2]
[3 3 3 4 4 4]]
>>> print(x.repeat([1,2], axis=0))
[[1 2]
[3 4]
[3 4]]
"""
if not isinstance(repeats, (tuple, list)):
repeats = (repeats,)
for index, element in enumerate(repeats):
if not isinstance(element, int):
raise TypeError(f"For 'Tensor.repeat', each element in {repeats} should be int, but got "
f"{type(element)} at index {index}.")
input_x = self
if axis is None:
input_x = self.ravel()
axis = 0
if axis is not None and not isinstance(axis, int):
raise TypeError(f"For 'Tensor.repeat', the argument 'axis' should be int, but got {type(axis)}.")
validator.check_axis_in_range(axis, input_x.ndim)
axis = axis + input_x.ndim if axis < 0 else axis
if len(repeats) == 1:
repeats = repeats[0]
if repeats == 0:
return Tensor_(input_x.dtype, (0,))
return tensor_operator_registry.get('repeat_elements')(input_x, repeats, axis)
size = input_x.shape[axis]
if len(repeats) != size:
raise ValueError(f"For 'Tensor.repeat', the length of 'repeats' must be the same as the shape of the "
f"original tensor in the 'axis' dimension, but got the length of 'repeats' "
f"{len(repeats)}, the shape of the original tensor in the 'axis' dimension {size}.")
subs = tensor_operator_registry.get('tensor_split')(input_x, size, axis)
repeated_subs = []
for sub, rep in zip(subs, repeats):
if rep != 0:
repeated_subs.append(tensor_operator_registry.get('repeat_elements')(sub, rep, axis))
return tensor_operator_registry.get('concatenate')(repeated_subs, axis)
[docs] def repeat_interleave(self, repeats, dim=None):
"""
For details, please refer to :func:`mindspore.ops.repeat_interleave`.
"""
return tensor_operator_registry.get('repeat_interleave')(self, repeats, dim)
[docs] def bernoulli(self, p=0.5, seed=None):
r"""
For details, please refer to :func:`mindspore.ops.bernoulli`.
"""
return tensor_operator_registry.get('bernoulli')(self, p, seed)
[docs] def random_categorical(self, num_sample, seed=0, dtype=mstype.int64):
r"""
For details, please refer to :func:`mindspore.ops.random_categorical`.
"""
validator.check_is_int(num_sample, 'num_sample')
validator.check_is_int(seed, 'seed')
return tensor_operator_registry.get('random_categorical')(self, num_sample, seed, dtype)
[docs] def masked_select(self, mask):
"""
For details, please refer to :func:`mindspore.ops.masked_select`.
"""
return tensor_operator_registry.get('masked_select')(self, mask)
[docs] def gather_elements(self, dim, index):
"""
For details, please refer to :func:`mindspore.ops.gather_elements`.
"""
validator.check_value_type('index', index, (Tensor, Tensor_,), 'Tensor.gather_elements')
return tensor_operator_registry.get('gather_elements')(self, dim, index)
[docs] def nonzero(self, as_tuple=False):
"""
For details, please refer to :func:`mindspore.ops.nonzero`.
"""
return tensor_operator_registry.get('nonzero')(self, as_tuple)
[docs] def svd(self, full_matrices=False, compute_uv=True):
"""
For details, please refer to :func:`mindspore.ops.svd`.
"""
svd_op = tensor_operator_registry.get("svd")
if compute_uv:
return svd_op(full_matrices, compute_uv)(self)
s, _, _ = svd_op(full_matrices, compute_uv)(self)
return s
[docs] def hardshrink(self, lambd=0.5):
r"""
For details, please refer to :func:`mindspore.ops.hardshrink`.
"""
return tensor_operator_registry.get('hardshrink')(self, lambd)
[docs] def heaviside(self, values):
r"""
For details, please refer to :func:`mindspore.ops.heaviside`.
"""
return tensor_operator_registry.get('heaviside')(self, values)
[docs] def hypot(self, other):
r"""
For details, please refer to :func:`mindspore.ops.hypot`.
"""
return tensor_operator_registry.get('hypot')(self, other)
def soft_shrink(self, lambd=0.5):
r"""
For details, please refer to :func:`mindspore.ops.soft_shrink`.
"""
return tensor_operator_registry.get('soft_shrink')(self, lambd)
def matrix_determinant(self):
r"""
For details, please refer to :func:`mindspore.ops.matrix_determinant`.
"""
return tensor_operator_registry.get('matrix_determinant')(self)
def log_matrix_determinant(self):
r"""
For details, please refer to :func:`mindspore.ops.log_matrix_determinant`.
"""
return tensor_operator_registry.get('log_matrix_determinant')(self)
[docs] def to_coo(self):
"""
Convert a Tensor to COOTensor.
Note:
Only 2-D tensor is supported for now.
Returns:
COOTensor, a sparse representation of the original dense tensor, containing the following parts.
- indices (Tensor): 2-D integer tensor, indicates the positions of `values` of the dense tensor.
- values (Tensor): 1-D tensor, indicates the non-zero values of the dense tensor.
- shape (tuple(int)): the shape of the COOTensor, is the same as the original dense tensor.
Raises:
ValueError: If input tensor is not 2-D.
Supported Platforms:
``GPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor(np.array([[1, 0], [-5, 0]]), mindspore.float32)
>>> output = x.to_coo()
>>> print(output.indices, output.values, output.shape)
[[0 0]
[1 0]] [ 1. -5.] (2, 2)
"""
return tensor_operator_registry.get('dense_to_sparse_coo')(self)
[docs] def to_csr(self):
"""
Convert a Tensor to CSRTensor.
Note:
Only 2-D tensor is supported for now.
Returns:
CSRTensor, a sparse representation of the original dense tensor, containing the following parts.
- indptr (Tensor): 1-D integer tensor, indicates the start and end point for `values` in each row.
- indices (Tensor): 1-D integer tensor, indicates the column positions of all non-zero values of the input.
- values (Tensor): 1-D tensor, indicates the non-zero values of the dense tensor.
- shape (tuple(int)): the shape of the CSRTensor, is the same as the original dense tensor.
Raises:
ValueError: If input tensor is not 2-D.
Supported Platforms:
``GPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor(np.array([[1, 0], [-5, 0]]), mindspore.float32)
>>> output = x.to_csr()
>>> print(output.indptr, output.indices, output.values, output.shape)
[0 1 2] [0 0] [ 1. -5.] (2, 2)
"""
return tensor_operator_registry.get('dense_to_sparse_csr')(self)
[docs] def tolist(self):
r"""
Convert a Tensor to List. If the input is Tensor scalar, a Python scalar will be returned.
Returns:
List or Python scalar.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore as ms
>>> x = ms.Tensor([[1, 2, 3], [4, 5, 6]])
>>> out1 = x.tolist()
>>> print(out1)
[[1, 2, 3], [4, 5, 6]]
>>> out2 = x[0][0].tolist()
>>> print(out2)
1
"""
return self.asnumpy().tolist()
[docs] def unbind(self, dim=0):
r"""
For details, please refer to :func:`mindspore.ops.unbind`.
"""
return tensor_operator_registry.get('unbind')(self, dim)
[docs] def unsorted_segment_min(self, segment_ids, num_segments):
r"""
For details, please refer to :func:`mindspore.ops.unsorted_segment_min`.
"""
return tensor_operator_registry.get('unsorted_segment_min')(self, segment_ids, num_segments)
[docs] def unsorted_segment_max(self, segment_ids, num_segments):
r"""
For details, please refer to :func:`mindspore.ops.unsorted_segment_max`.
"""
return tensor_operator_registry.get('unsorted_segment_max')(self, segment_ids, num_segments)
[docs] def unsorted_segment_prod(self, segment_ids, num_segments):
r"""
For details, please refer to :func:`mindspore.ops.unsorted_segment_prod`.
"""
return tensor_operator_registry.get('unsorted_segment_prod')(self, segment_ids, num_segments)
[docs] def unique_consecutive(self, return_idx=False, return_counts=False, axis=None):
"""
For details, please refer to :func:`mindspore.ops.unique_consecutive`.
"""
output, idx, counts = tensor_operator_registry.get("unique_consecutive")(return_idx, return_counts, axis)(self)
if return_idx and return_counts:
return output, idx, counts
if return_idx:
return output, idx
if return_counts:
return output, counts
return output
[docs] def unique_with_pad(self, pad_num):
"""
For details, please refer to :func:`mindspore.ops.unique_with_pad`.
"""
return tensor_operator_registry.get("unique_with_pad")(self, pad_num)
[docs] def diag(self):
r"""
For details, please refer to :func:`mindspore.ops.diag`.
"""
return tensor_operator_registry.get('diag')(self)
[docs] def diagflat(self, offset=0):
r"""
For details, please refer to :func:`mindspore.ops.diagflat`.
"""
return tensor_operator_registry.get('diagflat')(self, offset)
[docs] def xdivy(self, y):
r"""
For details, please refer to :func:`mindspore.ops.xdivy`.
"""
return tensor_operator_registry.get("xdivy")(self, y)
[docs] def split(self, split_size_or_sections, axis=0):
"""
For details, please refer to :func:`mindspore.ops.split`.
"""
return tensor_operator_registry.get('split')(self, split_size_or_sections, axis)
[docs] def tensor_split(self, indices_or_sections, axis=0):
"""
For details, please refer to :func:`mindspore.ops.tensor_split`.
"""
return tensor_operator_registry.get('tensor_split')(self, indices_or_sections, axis)
[docs] def vsplit(self, indices_or_sections):
"""
For details, please refer to :func:`mindspore.ops.vsplit`.
"""
return tensor_operator_registry.get('vsplit')(self, indices_or_sections)
[docs] def hsplit(self, indices_or_sections):
"""
For details, please refer to :func:`mindspore.ops.hsplit`.
"""
return tensor_operator_registry.get('hsplit')(self, indices_or_sections)
[docs] def dsplit(self, indices_or_sections):
"""
For details, please refer to :func:`mindspore.ops.dsplit`.
"""
return tensor_operator_registry.get('dsplit')(self, indices_or_sections)
[docs] def xlogy(self, y):
r"""
For details, please refer to :func:`mindspore.ops.xlogy`.
"""
return tensor_operator_registry.get("xlogy")(self, y)
[docs] def eigvals(self):
r"""
For details, please refer to :func:`mindspore.ops.eigvals`.
.. warning::
This is an experimental API that is subject to change or deletion.
"""
return tensor_operator_registry.get("eigvals")()(self)
[docs] def erf(self):
r"""
For details, please refer to :func:`mindspore.ops.erf`.
"""
return tensor_operator_registry.get("erf")(self)
[docs] def erfc(self):
r"""
For details, please refer to :func:`mindspore.ops.erfc`.
"""
return tensor_operator_registry.get("erfc")(self)
[docs] def tile(self, reps):
r"""
For details, please refer to :func:`mindspore.ops.tile`.
"""
return tensor_operator_registry.get('tile')(self, reps)
[docs] def topk(self, k, dim=None, largest=True, sorted=True):
r"""
For details, please refer to :func:`mindspore.ops.topk`.
"""
return tensor_operator_registry.get("topk")(self, k, dim, largest, sorted)
def top_k(self, k, sorted=True):
r"""
`Tensor.top_k` is deprecated, please use `Tensor.topk` instead.
"""
validator.check_is_int(k, 'k')
validator.check_bool(sorted, 'sorted')
return tensor_operator_registry.get("top_k")(self, k, sorted)
[docs] def sigmoid(self):
r"""
For details, please refer to :func:`mindspore.ops.sigmoid`.
"""
return tensor_operator_registry.get("sigmoid")(self)
[docs] def addmv(self, mat, vec, beta=1, alpha=1):
r"""
For details, please refer to :func:`mindspore.ops.addmv`.
"""
return tensor_operator_registry.get('addmv')(self, mat, vec, beta=beta, alpha=alpha)
[docs] def asinh(self):
r"""
For details, please refer to :func:`mindspore.ops.asinh`.
"""
return tensor_operator_registry.get('asinh')(self)
[docs] def arcsinh(self):
r"""
Alias for :func:`mindspore.Tensor.asinh`.
"""
return tensor_operator_registry.get('arcsinh')(self)
[docs] def atan(self):
r"""
For details, please refer to :func:`mindspore.ops.atan`.
"""
return tensor_operator_registry.get('atan')(self)
[docs] def atanh(self):
r"""
For details, please refer to :func:`mindspore.ops.atanh`.
"""
return tensor_operator_registry.get('atanh')(self)
[docs] def arctanh(self):
r"""
Alias for :func:`mindspore.Tensor.atanh`.
"""
return tensor_operator_registry.get('arctanh')(self)
[docs] def bmm(self, mat2):
r"""
For details, please refer to :func:`mindspore.ops.bmm`.
"""
return tensor_operator_registry.get('bmm')(self, mat2)
[docs] def to(self, dtype):
r"""
Performs tensor dtype conversion.
Args:
dtype (Number): The valid data type of the output tensor. Only constant value is allowed.
Returns:
Tensor, converted to the specified `dtype`.
Raises:
TypeError: If `dtype` is not a Number.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
>>> input_x = Tensor(input_np)
>>> dtype = mindspore.int32
>>> output = input_x.to(dtype)
>>> print(output.dtype)
Int32
"""
return tensor_operator_registry.get('to')(self, dtype)
[docs] def type(self, dtype=None):
r"""
Change the dtype of the Tensor to the `dtype` . Return the type if `dtype` is ``None`` .
Args:
dtype (mindspore.dtype, optional): The specified dtype of output tensor. Default: ``None``.
Returns:
Tensor or str. If `dtype` is ``None`` , return a str, which describes the dtype of Tensor.
If `dtype` is not ``None`` , then return a Tensor, and the dtype of returned Tensor is `dtype` .
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor([[1.2, 2], [3.4, 4]], dtype=mindspore.float32)
>>> print(x.type())
Float32
>>> print(x.type(dtype=mindspore.int32))
[[1 2]
[3 4]]
"""
if dtype is None:
return str(self.dtype)
return self.astype(dtype)
[docs] def type_as(self, other):
r"""
Change the dtype of the Tensor to the dtype of `other`.
Args:
other (Tensor): The return tensor has the same dtype as `other`.
Returns:
Tensor, has the same dtype as `other`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor([[1, 2], [3, 4]], dtype=mindspore.float32)
>>> y = Tensor([[1, 2], [3, 4]], dtype=mindspore.int32)
>>> x = x.type_as(y)
>>> print(x.dtype)
Int32
"""
return self.astype(other.dtype)
[docs] def bool(self):
r"""
Converts input tensor dtype to `bool`.
If the value in tensor is zero, it will be `False`, otherwise it will be `True`.
Returns:
Tensor, converted to the `bool` dtype.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> input_x = Tensor(np.ones([2,2]), mindspore.float32)
>>> output = input_x.bool()
>>> print(output.dtype)
Bool
"""
return tensor_operator_registry.get('bool')(self, mstype.bool_)
[docs] def float(self):
r"""
Converts input tensor dtype to `float32`.
Returns:
Tensor, converted to the `float32` dtype.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> input_x = Tensor(np.ones([2,2]), mindspore.int32)
>>> output = input_x.float()
>>> print(output.dtype)
Float32
"""
return tensor_operator_registry.get('float')(self, mstype.float32)
[docs] def half(self):
r"""
Converts input tensor dtype to `float16`.
Returns:
Tensor, converted to the `float16` dtype.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> input_x = Tensor(np.ones([2,2]), mindspore.int32)
>>> output = input_x.half()
>>> print(output.dtype)
Float16
"""
return tensor_operator_registry.get('half')(self, mstype.float16)
[docs] def int(self):
r"""
Converts input tensor dtype to `int32`. If the value in tensor is float or half, the decimal will be discarded.
Returns:
Tensor, converted to the `int32` dtype.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> input_x = Tensor(np.ones([2,2]), mindspore.float32)
>>> output = input_x.int()
>>> print(output.dtype)
Int32
"""
return tensor_operator_registry.get('int')(self, mstype.int32)
[docs] def long(self):
r"""
Converts input tensor dtype to `int64`. If the value in tensor is float or half, the decimal will be discarded.
Returns:
Tensor, converted to the `int64` dtype.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> input_x = Tensor(np.ones([2,2]), mindspore.int32)
>>> output = input_x.long()
>>> print(output.dtype)
Int64
"""
return tensor_operator_registry.get('long')(self, mstype.int64)
[docs] def short(self):
r"""
Return a copy of the tensor, cast to int16 type, equivalent to self.astype(mstype.int16).
If the value in tensor is float or half, the decimal will be discarded.
For details, please refer to :func:`mindspore.Tensor.astype`.
Returns:
Tensor, converted to the `int16` dtype.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore as ms
>>> import numpy as np
>>> x = ms.Tensor(np.array([1,2,3,4,5]), ms.int32)
>>> output = x.short()
>>> output
Tensor(shape=[5], dtype=Int16, value= [1, 2, 3, 4, 5])
"""
return tensor_operator_registry.get('cast')(self, mstype.int16)
[docs] def cholesky(self, upper=False):
r"""
For details, please refer to :func:`mindspore.ops.cholesky`.
"""
return tensor_operator_registry.get('cholesky')(self, upper=upper)
def cholesky_inverse(self, upper=False):
r"""
For details, please refer to :func:`mindspore.ops.cholesky_inverse`.
"""
return tensor_operator_registry.get('cholesky_inverse')(self, upper=upper)
[docs] def cholesky_solve(self, input2, upper=False):
r"""
For details, please refer to :func:`mindspore.ops.cholesky_solve`.
.. warning::
This is an experimental API that is subject to change or deletion.
"""
return tensor_operator_registry.get('cholesky_solve')(self, input2, upper)
[docs] def conj(self):
r"""
For details, please refer to :func:`mindspore.ops.conj`.
"""
return tensor_operator_registry.get('conj')(self)
[docs] def count_nonzero(self, axis=(), keep_dims=False, dtype=mstype.int32):
r"""
For details, please refer to :func:`mindspore.ops.count_nonzero`.
"""
return tensor_operator_registry.get('count_nonzero')(self, axis, keep_dims, dtype)
[docs] def cross(self, other, dim=None):
r"""
For details, please refer to :func:`mindspore.ops.cross`.
"""
return tensor_operator_registry.get('cross')(self, other, dim)
[docs] def erfinv(self):
r"""
For details, please refer to :func:`mindspore.ops.erfinv`.
"""
return tensor_operator_registry.get('erfinv')(self)
[docs] def less_equal(self, other):
r"""
For details, please refer to :func:`mindspore.ops.less_equal`.
"""
return tensor_operator_registry.get('less_equal')(self, other)
[docs] def lcm(self, other):
r"""
For details, please refer to :func:`mindspore.ops.lcm`.
"""
return tensor_operator_registry.get('lcm')(self, other)
[docs] def ldexp(self, other):
r"""
For details, please refer to :func:`mindspore.ops.ldexp`.
"""
return tensor_operator_registry.get('ldexp')(self, other)
[docs] def fold(self, output_size, kernel_size, dilation=1, padding=0, stride=1):
r"""
For details, please refer to :func:`mindspore.ops.fold`.
"""
return tensor_operator_registry.get('fold')(self, output_size, kernel_size, dilation, padding, stride)
[docs] def unfold(self, kernel_size, dilation=1, padding=0, stride=1):
r"""
For details, please refer to :func:`mindspore.ops.unfold`.
.. warning::
This is an experimental API that is subject to change or deletion.
"""
return tensor_operator_registry.get('unfold')(self, kernel_size, dilation, padding, stride)
def expand(self, size):
r"""
For details, please refer to :func:`mindspore.ops.broadcast_to`.
"""
if isinstance(size, Tensor):
size = tensor_operator_registry.get('tensortotuple')()(size)
return tensor_operator_registry.get('expand')(self, size)
[docs] def cumprod(self, dim, dtype=None):
r"""
For details, please refer to :func:`mindspore.ops.cumprod`.
"""
return tensor_operator_registry.get('cumprod')(self, dim, dtype)
[docs] def multiply(self, value):
r"""
For details, please refer to :func:`mindspore.ops.multiply`.
"""
return tensor_operator_registry.get('multiply')(self, value)
[docs] def div(self, value, *, rounding_mode=None):
r"""
For details, please refer to :func:`mindspore.ops.div`.
"""
return tensor_operator_registry.get('div')(self, value, rounding_mode=rounding_mode)
[docs] def divide(self, value, *, rounding_mode=None):
r"""
Alias for :func:`mindspore.Tensor.div`.
"""
return tensor_operator_registry.get('div')(self, value, rounding_mode=rounding_mode)
[docs] def eq(self, other):
r"""
For details, please refer to :func:`mindspore.ops.eq`.
"""
return tensor_operator_registry.get('equal')(self, other)
[docs] def equal(self, other):
r"""
For details, please refer to :func:`mindspore.ops.equal`.
"""
return tensor_operator_registry.get('equal')(self, other)
[docs] def expm1(self):
r"""
For details, please refer to :func:`mindspore.ops.expm1`.
"""
return tensor_operator_registry.get('expm1')(self)
[docs] def index_add(self, dim, index, source, *, alpha=1):
r"""
For details, please refer to :func:`mindspore.ops.index_add`.
"""
check_is_number(alpha, (int, float))
source = tensor_operator_registry.get('__mul__')(source, alpha)
return tensor_operator_registry.get('index_add')(self, indices=index, y=source, axis=dim)
[docs] def greater(self, other):
r"""
For details, please refer to :func:`mindspore.ops.greater`.
"""
return tensor_operator_registry.get('greater')(self, other)
[docs] def greater_equal(self, other):
r"""
For details, please refer to :func:`mindspore.ops.greater_equal`.
"""
return tensor_operator_registry.get('greater_equal')(self, other)
[docs] def igamma(self, other):
r"""
For details, please refer to :func:`mindspore.ops.igamma`.
"""
return tensor_operator_registry.get('igamma')(self, other)
[docs] def igammac(self, other):
r"""
For details, please refer to :func:`mindspore.ops.igammac`.
"""
return tensor_operator_registry.get('igammac')(self, other)
[docs] def isinf(self):
r"""
For details, please refer to :func:`mindspore.ops.isinf`.
"""
return tensor_operator_registry.get('isinf')(self)
[docs] def isnan(self):
r"""
For details, please refer to :func:`mindspore.ops.isnan`.
"""
return tensor_operator_registry.get('isnan')(self)
[docs] def flip(self, dims):
"""
For details, please refer to :func:`mindspore.ops.flip`.
"""
return tensor_operator_registry.get('flip')(self, dims)
[docs] def fliplr(self):
"""
For details, please refer to :func:`mindspore.ops.fliplr`.
"""
return tensor_operator_registry.get('fliplr')(self)
[docs] def flipud(self):
"""
For details, please refer to :func:`mindspore.ops.flipud`.
"""
return tensor_operator_registry.get('flipud')(self)
[docs] def is_floating_point(self):
"""
For details, please refer to :func:`mindspore.ops.is_floating_point`.
"""
return tensor_operator_registry.get('is_floating_point')(self)
[docs] def is_signed(self):
"""
Judge whether the data type of tensor is a signed data type.
Returns:
Bool. If the dtype of `self` is a signed data type, return True. Otherwise, return False.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore as ms
>>> x = ms.Tensor([1, 2, 3], ms.int64)
>>> y = ms.Tensor([1, 2, 3], ms.uint64)
>>> output = x.is_signed()
>>> output2 = y.is_signed()
>>> print(output)
True
>>> print(output2)
False
"""
return self.dtype in mstype.signed_type
[docs] def le(self, other):
r"""
For details, please refer to :func:`mindspore.ops.le`.
"""
return tensor_operator_registry.get('le')(self, other)
[docs] def less(self, other):
r"""
For details, please refer to :func:`mindspore.ops.less`.
"""
return tensor_operator_registry.get('less')(self, other)
[docs] def lt(self, other):
"""
Alias for :func:`mindspore.Tensor.less`.
"""
return self.less(other)
[docs] def logical_and(self, other):
r"""
For details, please refer to :func:`mindspore.ops.logical_and`.
"""
return tensor_operator_registry.get('logical_and')(self, other)
[docs] def logical_not(self):
r"""
For details, please refer to :func:`mindspore.ops.logical_not`.
"""
return tensor_operator_registry.get('logical_not')(self)
[docs] def logical_or(self, other):
r"""
For details, please refer to :func:`mindspore.ops.logical_or`.
"""
return tensor_operator_registry.get('logical_or')(self, other)
[docs] def logical_xor(self, other):
r"""
For details, please refer to :func:`mindspore.ops.logical_xor`.
"""
return tensor_operator_registry.get('logical_xor')(self, other)
def lstsq(self, A):
r"""
For details, please refer to :func:`mindspore.ops.lstsq`.
"""
return tensor_operator_registry.get('lstsq')(self, A)
@property
def mH(self):
r"""
Accessing this property is equivalent to Calling self.adjoint().
For details, please refer to :func:`mindspore.ops.adjoint`.
"""
return self.adjoint()
@property
def mT(self):
r"""
Returns the Tensor that exchanges the last two dimensions.
Accessing the attribute, x.mT, is equal to calling the method, x.swapaxes(-2, -1).
For details, please refer to :func:`mindspore.Tensor.swapaxes`.
"""
return self.swapaxes(-2, -1)
[docs] def mvlgamma(self, p):
r"""
For details, please refer to :func:`mindspore.ops.mvlgamma`.
"""
return tensor_operator_registry.get('mvlgamma')(self, p)
[docs] def matmul(self, tensor2):
r"""
For details, please refer to :func:`mindspore.ops.matmul`.
"""
return tensor_operator_registry.get('matmul')(self, tensor2)
[docs] def inner(self, other):
r"""
For details, please refer to :func:`mindspore.ops.inner`.
"""
return tensor_operator_registry.get('inner')(self, other)
[docs] def multinomial(self, num_samples, replacement=True, seed=None):
r"""
For details, please refer to :func:`mindspore.ops.multinomial`.
"""
return tensor_operator_registry.get('multinomial')(self, num_samples, replacement, seed)
def matrix_power(self, n):
r"""
For details, please refer to :func:`mindspore.ops.matrix_power`.
.. warning::
This is an experimental API that is subject to change or deletion.
"""
return tensor_operator_registry.get('matrix_power')(self, n)
[docs] def maximum(self, other):
r"""
For details, please refer to :func:`mindspore.ops.maximum`.
"""
return tensor_operator_registry.get('maximum')(self, other)
[docs] def mm(self, mat2):
r"""
For details, please refer to :func:`mindspore.ops.mm`.
"""
return tensor_operator_registry.get('mm')(self, mat2)
[docs] def msort(self):
r"""
For details, please refer to :func:`mindspore.ops.msort`.
"""
return tensor_operator_registry.get('msort')(self)
[docs] def mul(self, value):
r"""
For details, please refer to :func:`mindspore.ops.mul`.
"""
return tensor_operator_registry.get('mul')(self, value)
[docs] def nan_to_num(self, nan=0.0, posinf=None, neginf=None):
"""
For details, please refer to :func:`mindspore.ops.nan_to_num`.
"""
return tensor_operator_registry.get('nan_to_num')(self, nan, posinf, neginf)
[docs] def neg(self):
r"""
For details, please refer to :func:`mindspore.ops.neg`.
"""
return tensor_operator_registry.get('neg')(self)
[docs] def ne(self, other):
r"""
For details, please refer to :func:`mindspore.ops.ne`.
"""
return tensor_operator_registry.get('ne')(self, other)
[docs] def not_equal(self, other):
r"""
For details, please refer to :func:`mindspore.ops.not_equal`.
"""
return tensor_operator_registry.get('not_equal')(self, other)
[docs] def new_zeros(self, size, dtype=None):
r"""
Return a tensor of `size` filled with zeros.
.. warning::
For argument `size`, Tensor type input will be deprecated in the future version.
Args:
size (Union[int, tuple, list, Tensor]): An int, list or tuple of integers defining the output shape.
dtype (mindspore.dtype, optional): The desired dtype of the output tensor. If None, the returned tensor has
thesame dtype as `self`. Default: ``None``.
Returns:
Tensor, the shape and dtype is defined above and filled with zeros.
Raises:
TypeError: If `size` is neither an int nor an tuple/list/Tensor of int.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> output = x.new_zeros((2, 2))
>>> print(output)
[[0. 0.]
[0. 0.]]
"""
return tensor_operator_registry.get('zeros')(size, dtype)
[docs] def new_ones(self, size, dtype=None):
r"""
Return a tensor of `size` filled with ones.
.. warning::
For argument `size`, Tensor type input will be deprecated in the future version.
Args:
size (Union[int, tuple, list, Tensor]): An int, list or tuple of integers defining the output shape.
dtype (mindspore.dtype, optional): The desired dtype of the output tensor. If None, the returned
tensor has the same dtype as `self`. Default: ``None``.
Returns:
Tensor, the shape and dtype is defined above and filled with ones.
Raises:
TypeError: If `size` is neither an int nor an tuple/list/Tensor of int.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> output = x.new_ones((2, 2))
>>> print(output)
[[1. 1.]
[1. 1.]]
"""
return tensor_operator_registry.get('ones')(size, dtype)
[docs] def sign(self):
r"""
For details, please refer to :func:`mindspore.ops.sign`.
"""
return tensor_operator_registry.get('sign')(self)
[docs] def signbit(self):
"""
For details, please refer to :func:`mindspore.ops.signbit`.
"""
return tensor_operator_registry.get('signbit')(self)
[docs] def sgn(self):
"""
For details, please refer to :func:`mindspore.ops.sgn`.
"""
return tensor_operator_registry.get('sgn')(self)
[docs] def sin(self):
r"""
For details, please refer to :func:`mindspore.ops.sin`.
"""
return tensor_operator_registry.get('sin')(self)
[docs] def sinc(self):
r"""
For details, please refer to :func:`mindspore.ops.sinc`.
"""
return tensor_operator_registry.get('sinc')(self)
[docs] def sinh(self):
r"""
For details, please refer to :func:`mindspore.ops.sinh`.
"""
return tensor_operator_registry.get('sinh')(self)
[docs] def sort(self, axis=-1, descending=False):
r"""
For details, please refer to :func:`mindspore.ops.sort`.
"""
return tensor_operator_registry.get('sort')(self, axis=axis, descending=descending)
[docs] def argsort(self, axis=-1, descending=False):
"""
For details, please refer to :func:`mindspore.ops.argsort`.
"""
return tensor_operator_registry.get('argsort')(self, axis, descending)
[docs] def trunc(self):
r"""
For details, please refer to :func:`mindspore.ops.trunc`.
"""
return tensor_operator_registry.get('trunc')(self)
[docs] def where(self, condition, y):
r"""
For details, please refer to :func:`mindspore.ops.where`.
"""
return tensor_operator_registry.get('where')(condition, self, y)
[docs] def imag(self):
r"""
For details, please refer to :func:`mindspore.ops.imag`.
"""
return tensor_operator_registry.get('imag')(self)
def quantile(self, q, axis=None, keepdims=False):
r"""
For details, please refer to :func:`mindspore.ops.quantile`.
"""
return tensor_operator_registry.get('quantile')(self, q, axis, keepdims)
def nanquantile(self, q, axis=None, keepdims=False):
"""
For details, please refer to :func:`mindspore.ops.nanquantile`.
"""
return tensor_operator_registry.get('nanquantile')(self, q, axis, keepdims)
[docs] def orgqr(self, input2):
r"""
For details, please refer to :func:`mindspore.ops.orgqr`.
"""
return tensor_operator_registry.get('orgqr')(self, input2)
[docs] def lu_solve(self, LU_data, LU_pivots):
r"""
For details, please refer to :func:`mindspore.ops.lu_solve`.
.. warning::
This is an experimental API that is subject to change or deletion.
"""
return tensor_operator_registry.get('lu_solve')(self, LU_data, LU_pivots)
[docs] def nextafter(self, other):
r"""
For details, please refer to :func:`mindspore.ops.nextafter`.
"""
return tensor_operator_registry.get('nextafter')(self, other)
def qr(self, some=True):
r"""
For details, please refer to :func:`mindspore.ops.qr`.
"""
validator.check_value_type('some', some, bool, 'Tensor.qr')
return tensor_operator_registry.get('qr')(self, 'reduced' if some else 'complete')
[docs] def ormqr(self, input2, input3, left=True, transpose=False):
r"""
For details, please refer to :func:`mindspore.ops.ormqr`,
Args `input2` and `input3` correspond to the args `tau` and `other` of :func:`mindspore.ops.ormqr`.
"""
return tensor_operator_registry.get('ormqr')(self, input2, input3, left, transpose)
[docs] def masked_scatter(self, mask, x):
r"""
Returns a Tensor. Updates the value in the "self Tensor" with the `tensor` value according to the mask.
The shape of `mask` and the "self Tensor" must be the same or `mask` is broadcastable.
.. warning::
This is an experimental API that is subject to change or deletion.
Args:
mask (Tensor[bool]): A bool tensor with a shape broadcastable to the "self Tensor".
x (Tensor): A tensor with the same data type as the "self Tensor". The number
of elements must be greater than or equal to the number of True's in `mask`.
Returns:
Tensor, with the same type and shape as the "self Tensor".
Raises:
TypeError: If `mask` or `x` is not a Tensor.
TypeError: If data type of the "self Tensor" is not be supported.
TypeError: If dtype of `mask` is not bool.
TypeError: If the dim of the "self Tensor" less than the dim of `mask`.
ValueError: If `mask` can not be broadcastable to the "self Tensor".
ValueError: If the number of elements in `x` is less than the number required for the updates.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor(np.array([1., 2., 3., 4.]), mindspore.float32)
>>> mask = Tensor(np.array([True, True, False, True]), mindspore.bool_)
>>> tensor = Tensor(np.array([5., 6., 7.]), mindspore.float32)
>>> output = x.masked_scatter(mask, tensor)
>>> print(output)
[5. 6. 3. 7.]
"""
return tensor_operator_registry.get('masked_scatter')()(self, mask, x)
[docs] def index_put(self, indices, values, accumulate=False):
r"""
Returns a Tensor. According to the index number of `indices` ,
replace the value corresponding to the "self Tensor" with the value in `values`.
Args:
indices (tuple[Tensor], list[Tensor]): the indices of type int32 or int64, used to index into the "self
Tensor". The rank of tensors in indices should be 1-D, size of indices should <= "self Tensor".rank
and the tensors in indices should be broadcastable.
values (Tensor): 1-D Tensor of the same type as "self Tensor". if size == 1 will be broadcast
accumulate (bool): If `accumulate` is True, the elements in values are added to "self Tensor",
else the elements in `values` replace the corresponding element in the "self Tensor".
Default: ``False``.
Returns:
Tensor, with the same type and shape as the "self Tensor".
Raises:
TypeError: If the dtype of the "self Tensor" is not equal to the dtype of `values`.
TypeError: If the dtype of `indices` is not tuple[Tensor], list[Tensor].
TypeError: If the dtype of tensors in `indices` are not int32 or int64.
TypeError: If the dtype of tensors in `indices` are inconsistent.
TypeError: If the dtype of `accumulate` is not bool.
ValueError: If rank(`values`) is not 1-D.
ValueError: If size(`values`) is not 1 or max size of the tensors in `indices` when
rank("self Tensor") == size(`indices`).
ValueError: If size(`values`) is not 1 or "self Tensor".shape[-1] when
rank("self Tensor") > size(`indices`).
ValueError: If the rank of tensors in `indices` is not 1-D.
ValueError: If the tensors in `indices` is not be broadcastable.
ValueError: If size(`indices`) > rank("self Tensor").
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.int32))
>>> values = Tensor(np.array([3]).astype(np.int32))
>>> indices = [Tensor(np.array([0, 1, 1]).astype(np.int32)), Tensor(np.array([1, 2, 1]).astype(np.int32))]
>>> accumulate = True
>>> output = x.index_put(indices, values, accumulate)
>>> print(output)
[[1 5 3]
[4 8 9]]
"""
validator.check_value_type('accumulate', accumulate, bool, 'Tensor.index_put')
_index_put = tensor_operator_registry.get('index_put')(0 if accumulate is False else 1)
return _index_put(self, values, indices)
[docs] def move_to(self, to, blocking=True):
r"""
Copy Tensor to target device synchronously or asynchronously, default synchronously. only support PyNative mode.
Args:
to (str): a string type value, one of ``"Ascend"``, ``"GPU"``, ``"CPU"``.
blocking (bool): a bool type value, using synchronous copy or asynchronous copy.
Default: ``True`` , synchronous copy.
Returns:
New Tensor, storged on target device which with the same type and shape as the "self Tensor".
Raises:
ValueError: If the type of `blocking` is not bool type.
ValueError: If the value of `to` is not one of ``"Ascend"``, ``"GPU"``, ``"CPU"``.
ValueError: If the run mode is not PyNative mode.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore as ms
>>> from mindspore import Tensor
>>> x = ms.Tensor([1, 2, 3], ms.int64)
>>> new_tensor = x.move_to("CPU")
"""
if not isinstance(blocking, bool):
raise ValueError(f"The type of 'blocking' must be bool, but got {blocking}")
if to not in ("Ascend", "GPU", "CPU"):
raise ValueError(f"The value of 'to' must be one of ['Ascend', 'GPU', 'CPU'], but got {to}")
mode = context.get_context("mode")
if mode != context.PYNATIVE_MODE:
raise ValueError(f"The method of 'move_to' only supported in pynative mode, but got: {mode}.")
return Tensor(Tensor_.move_to(self, to, blocking))
def _offload(self):
r"""
Offload tensor parameter to host. Currently, only support for pynative mode.
Supported Platforms:
``Ascend``
Examples:
>>> import mindspore as ms
>>> from mindspore import Tensor
>>> x = ms.Tensor([1, 2, 3], ms.int64)
>>> x._offload()
"""
return Tensor_._offload(self)
def _vm_compare(*args):
"""Implement `vm_compare` for tensor."""
if args:
obj_str = args[-1]
else:
raise ValueError("_vm_compare does not receive any input.")
if obj_str == "shape":
fn = getattr(args[0].asnumpy(), obj_str)
return fn
if obj_str == "__setitem__":
fn = getattr(args[0].asnumpy(), obj_str)
index = args[1].asnumpy() if isinstance(args[1], Tensor) else args[1]
value = args[2].asnumpy() if isinstance(args[2], Tensor) else args[2]
fn(index, value)
return args[0]
if len(args) == 2:
fn = getattr(args[0].asnumpy(), obj_str)
return Tensor(fn())
if isinstance(args[0], Tensor):
fn = getattr(args[0].asnumpy(), obj_str)
y = args[1].asnumpy() if isinstance(args[1], Tensor) else args[1]
else:
obj_str = "__r" + obj_str[2:]
fn = getattr(args[1].asnumpy(), obj_str)
y = args[0]
return Tensor(np.array(fn(y)))
def _check_tensor_input(input_data=None, dtype=None, shape=None, init=None):
"""Check the tensor input."""
if input_data is not None and shape is not None:
raise ValueError(f"When initializing a tensor with 'input_data', 'shape' should be set to None."
f"But got shape: {shape}.")
if init is not None and (shape is None or dtype is None):
raise ValueError("init, dtype and shape must have values at the same time.")
if input_data is not None:
if isinstance(input_data, np.ndarray) and input_data.ndim >= 1 and input_data.size == 0:
raise ValueError("input_data can not contain zero dimension.")
if isinstance(input_data, (tuple, list)) and np.array(input_data).ndim >= 1 \
and np.array(input_data).size == 0:
raise ValueError("input_data can not contain zero dimension.")
if shape is not None and not (hasattr(init, "__enable_zero_dim__") and init.__enable_zero_dim__) and 0 in shape:
raise ValueError("Shape can not contain zero value.")
def _check_tensor_dynamic_shape(dtype=None, shape=None, init=None):
"""Check if the tensor has dynamic shape."""
shape_list = list(shape)
if len(shape_list) >= 1:
shape_replaced_list = [-1 if i is None else i for i in shape_list]
if isinstance(shape, tuple):
shape = tuple(shape_replaced_list)
if isinstance(shape, list):
shape = shape_replaced_list
if is_shape_unknown(shape) and (dtype is None or init is not None):
raise ValueError("If setting dynamic shape, dtype must not be None, init must be None")
return shape
def _check_astype_and_convert(dtype):
"""Check whether dtype is a valid input, and convert to mstype"""
all_types = mstype.__dtype__ + ["int", "float", "bool"]
if isinstance(dtype, str):
if dtype.lower() not in all_types:
raise TypeError(f"For Tensor.astype, the string input type must be one of {all_types}, "
f"but got '{dtype}'.")
dtype = mstype.pytype_to_dtype(np.dtype(dtype.lower()))
elif isinstance(dtype, type):
dtype = mstype.pytype_to_dtype(dtype)
elif dtype not in mstype.number_type + (mstype.bool_,):
raise TypeError(
f"For Tensor.astype, the input type must be one of {list(mstype.number_type + (mstype.bool_,) + np_types)},"
f" but got '{dtype}'.")
return dtype
setattr(tensor_operator_registry, 'vm_compare', _vm_compare)